-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpoisson2D.gd
251 lines (199 loc) · 6.96 KB
/
poisson2D.gd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
@tool
extends Node2D
# Procedural algorithm for the generation of two-dimensional Poission-disc
# sampled ("blue") noise. For mathematical details, please see the blog
# article at https://scipython.com/blog/poisson-disc-sampling-in-python/
# Christian Hill, March 2017.
# class member variables go here, for example:
var total = 30
# Choose up to k points around each reference point as candidates for a new
# sample point
var k = 20
# Minimum distance between samples
var r = 100
# shouldn't be an exact multiplier of r
var width = 950
var height = 650
# Cell side length
var a = r / sqrt(2)
# Number of cells in the x- and y-directions of the grid
var nx = int(width / a) + 1
var ny = int(height / a) + 1
# A list of coordinates in the grid of cells
var coords_list = []
# Initilalize the dictionary of cells: each key is a cell's coordinates, the
# corresponding value is the index of that cell's point's coordinates in the
# samples list (or None if the cell is empty).
var cells = {}
var samples = []
#var edges = []
#export var seede = 3046862638 : set = set_seed
var seede = 10000001 #3046862638
func _ready():
# Called when the node is added to the scene for the first time.
# Initialization here
# randomize the seed
#randomize()
#var s = randi()
#set_seed(s)
#seede = s
#seed(seede)
#run()
#set_seed(seede)
pass
func set_seed(value):
if Engine.is_editor_hint():
print("Seed value is " + str(value))
# if not set_get we don't need this
#if !Engine.editor_hint:
#await self.tree_entered
for ix in range(nx):
for iy in range(ny):
coords_list.append([ix, iy])
for coords in coords_list:
# we can't use straightforward coords as key :(
var key = Vector2(coords[0], coords[1])
# we can't store null as value, so...
cells[key] = -1
seed(value)
#rand_seed(value)
run()
#print("Seed " + str(seede))
#func _process(delta):
# # Called every frame. Delta is time since last frame.
# # Update game logic here.
# pass
func choice(list):
var i = randi() % list.size()
return i #list[i]
func get_cell_coords(pt):
"""Get the coordinates of the cell that pt = (x,y) falls in."""
return [int(pt[0] / a), int(pt[1] / a)]
func get_neighbours(coords):
"""Return the indexes of points in cells neighbouring cell at coords.
For the cell at coords = (x,y), return the indexes of points in the cells
with neighbouring coordinates illustrated below: ie those cells that could
contain points closer than r.
ooo
ooooo
ooXoo
ooooo
ooo
"""
var dxdy = [Vector2(-1, -2), Vector2(0, -2), Vector2(1, -2), Vector2(-2, -1), Vector2(-1, -1), Vector2(0, -1), Vector2(1, -1), Vector2(2, -1),
Vector2(-2, 0), Vector2(-1, 0), Vector2(1, 0), Vector2(2, 0), Vector2(-2, 1), Vector2(-1, 1), Vector2(0, 1), Vector2(1, 1), Vector2(2, 1),
Vector2(-1, 2), Vector2(0, 2), Vector2(1, 2), Vector2(0, 0)]
var neighbours = []
for v in dxdy:
var dx = v.x
var dy = v.y
var neighbour_coords = [coords[0] + dx, coords[1] + dy]
if (0 <= neighbour_coords[0] and neighbour_coords[0] < nx and
0 <= neighbour_coords[1] and neighbour_coords[1] < ny):
# We're off the grid: no neighbours here.
# those were making us stuck in the loop, so I negated the above statement
#continue
var key = Vector2(neighbour_coords[0], neighbour_coords[1])
var neighbour_cell = cells[key]
if neighbour_cell != -1:
# This cell is occupied: store this index of the contained point.
neighbours.append(neighbour_cell)
return neighbours
func point_valid(pt, samples):
"""Is pt a valid point to emit as a sample?
It must be no closer than r from any other point: check the cells in its
immediate neighbourhood.
"""
var cell_coords = get_cell_coords(pt)
for idx in get_neighbours(cell_coords):
var nearby_pt = samples[idx]
# Squared distance between or candidate point, pt, and this nearby_pt.
var distance2 = pow((nearby_pt[0] - pt[0]), 2) + pow((nearby_pt[1] - pt[1]), 2)
if distance2 < pow(r, 2):
# The points are too close, so pt is not a candidate.
return false
# All points tested: if we're here, pt is valid
return true
func get_point(k, refpt, samples):
"""Try to find a candidate point relative to refpt to emit in the sample.
We draw up to k points from the annulus of inner radius r, outer radius 2r
around the reference point, refpt. If none of them are suitable (because
they're too close to existing points in the sample), return False.
Otherwise, return the pt.
"""
var i = 0
while i < k:
var rho = randf_range(r, 2 * r)
var theta = randf_range(0, 2 * PI)
var pt = [refpt[0] + rho * cos(theta), refpt[1] + rho * sin(theta)]
if (0 < pt[0] and pt[0] < width and 0 < pt[1] and pt[1] < height):
# This point falls outside the domain, so try again.
#continue
if point_valid(pt, samples):
return pt
i += 1
# We failed to find a suitable point in the vicinity of refpt.
return false
func run():
# Pick a random point to start with.
#var pt = [randf_range(0, width), randf_range(0, height)]
# Start in the middle
var pt = [width/2, height/2]
samples = [pt]
# Our first sample is indexed at 0 in the samples list...
var coords = get_cell_coords(pt)
#var key = coords[0] + coords[1] * nx
var key = Vector2(coords[0], coords[1])
cells[key] = 0
# ... and it is active, in the sense that we're going to look for more points
# in its neighbourhood.
var active = [0]
var nsamples = 1
# As long as there are points in the active list, keep trying to find samples.
while active:
# choose a random "reference" point from the active list.
#var idx = random.choice(active)
var idx = choice(active)
#print("Idx: " + str(idx))
var refpt = samples[idx]
# Try to pick a new point relative to the reference point.
pt = get_point(k, refpt, samples)
if pt:
# add to edges
#edges.append([refpt, pt])
# Point pt is valid: add it to the samples list and mark it as active
samples.append(pt)
nsamples += 1
active.append(samples.size() - 1)
coords = get_cell_coords(pt)
#key = coords[0] + coords[1] * nx
key = Vector2(coords[0], coords[1])
cells[key] = samples.size() -1
#add indices to edges
# because the new point is always appended at the end
#edges.append([idx, samples.size()-1])
# cap number of points
if nsamples == total:
active = []
else:
# We had to give up looking for valid points near refpt, so remove it
# from the list of "active" points.
#if active.size() > idx:
active.remove_at(idx)
print(samples.size())
return samples
func _draw():
#pass
for i in range(0, samples.size()):
var p = samples[i]
if i == 0:
draw_circle(Vector2(p[0], p[1]), 2.0, Color(0,1,0))
else:
draw_circle(Vector2(p[0], p[1]), 2.0, Color(1,0,0))
# for e in edges:
# var p1 = samples[e[0]]
# var p2 = samples[e[1]]
# draw_line(Vector2(p1[0], p1[1]), Vector2(p2[0], p2[1]), Color(0,0,1))
# #draw_line(Vector2(e[0][0], e[0][1]), Vector2(e[1][0], e[1][1]), Color(0,0,1))
# changing type to CanvasItem fixes this but breaks instancing
queue_redraw()