-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtbp_per2.m
77 lines (50 loc) · 2.47 KB
/
tbp_per2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
function [X,T] = tbp_per2 (x, tf, delta)
%Simulation of perturbed two-body problem (TBP) under
%J2 (zonal harmonics) using approximated secular motion
%Inputs:
% x: State vector [km;km/s]
% tf: Final simulation time [s]
% delta: Simulation time step [s]
%Outputs:
% X: State history matrix [km;km/s]
% T: Time values vector [s]
mu=3.986004418e+5; %Standard gravitational parameter [km^3/s^2]
J2=1.082635854e-3; %J2 zonal coefficient [dimensionless]
Re=6378.1363; %Earth radius [km]
oe=rv2oe(x(1:3),x(4:6)); %Obtaining the initial orbital elements
a0=oe(1); %Semimajor axis [km]
e0=oe(2); %Eccentricity [dimensionless]
inc0=oe(3); %Inclination [rad]
W0=oe(4); %RAAN [rad]
w0=oe(5); %Argument of periapsis [rad]
theta0=oe(6); %True anomaly [rad]
E0=2*atan2((1-e0^2)^0.5*sin(theta0)/(1+e0*cos(theta0)),...
(e0+cos(theta0))/(1+e0*cos(theta0))); %Initial eccentric anomaly [rad]
M0=E0-e0*sin(E0); %Initial mean anomaly [rad]
i=1; %Index number
X=zeros(6,floor(tf/delta)+1); %Initiation of state history matrix [km;km/s]
T=zeros(1,floor(tf/delta)+1); %Initiation of time vector [s]
E=0; %An initial guess for Kepler probelm used only for the first loop [rad]
epsilon=1e-6; %Stopping criterion for solving the Kepler problem
N=1000; %Maximum iteration number for Kepler probelm
for t=0:delta:tf
[r,v]=oe2rv(oe); %Orbital element to r and v [km,km/s]
x=[r;v]; %State vector [km;km/s]
X(:,i)=x; %Saving history matrix [km;km/s]
T(i)=t; %Saving time values [s]
a=a0; %Semimajor axis does not change [km]
e=e0; %Eccentricity does not change [dimensionless]
n=(mu/a^3)^0.5; %Mean anomaly (or mean angular motion) [1/s]
p=a*(1-e^2); %Semi-latus rectum [km]
inc=inc0; %Inclination does not change [rad]
dW=-1.5*J2*Re^2*n/p^2*cos(inc); %Time rate of RAAN [rad/s]
W=W0+dW*t; %Calculating RAAN at each time [rad]
dw=-1.5*J2*Re^2*n/p^2*(2.5*sin(inc)^2-2); %Time rate of argument of periapsis [rad/s]
w=w0+dw*t; %Calculating argument of periapsis at each time [rad]
dM=n*(1-1.5*J2*Re^2/p^2*(1-e^2)^0.5*(1.5*sin(inc)^2-1)); %Time rate of Mean motion [rad/s]
M=M0+dM*t; %Calculating mean motion at each time [rad]
[theta,E]=Kepler(M,e,epsilon,N,E); %Solving Kepler problem [rad,rad]
oe=[a;e;inc;W;w;theta]; %Vector of orbital elements
i=i+1; %Index updating
end
end