-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathJavaLazySegmentTree.txt
181 lines (157 loc) · 6.78 KB
/
JavaLazySegmentTree.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
class LazySegmentTree {
final int MAX = 5000000; // Max tree size
int tree[] = new int[MAX]; // To store segment tree
int lazy[] = new int[MAX]; // To store pending updates
/* si -> index of current node in segment tree
ss and se -> Starting and ending indexes of elements for
which current nodes stores sum.
us and eu -> starting and ending indexes of update query
ue -> ending index of update query
diff -> which we need to add in the range us to ue */
void updateRangeUtil(int si, int ss, int se, int us,
int ue, int diff) {
// If lazy value is non-zero for current node of segment
// tree, then there are some pending updates. So we need
// to make sure that the pending updates are done before
// making new updates. Because this value may be used by
// parent after recursive calls (See last line of this
// function)
if (lazy[si] != 0) {
// Make pending updates using value stored in lazy
// nodes
tree[si] += (se - ss + 1) * lazy[si];
// checking if it is not leaf node because if
// it is leaf node then we cannot go further
if (ss != se) {
// We can postpone updating children we don't
// need their new values now.
// Since we are not yet updating children of si,
// we need to set lazy flags for the children
lazy[si * 2 + 1] += lazy[si];
lazy[si * 2 + 2] += lazy[si];
}
// Set the lazy value for current node as 0 as it
// has been updated
lazy[si] = 0;
}
// out of range
if (ss > se || ss > ue || se < us)
return;
// Current segment is fully in range
if (ss >= us && se <= ue) {
// Add the difference to current node
tree[si] += (se - ss + 1) * diff;
// same logic for checking leaf node or not
if (ss != se) {
// This is where we store values in lazy nodes,
// rather than updating the segment tree itelf
// Since we don't need these updated values now
// we postpone updates by storing values in lazy[]
lazy[si * 2 + 1] += diff;
lazy[si * 2 + 2] += diff;
}
return;
}
// If not completely in rang, but overlaps, recur for
// children,
int mid = (ss + se) / 2;
updateRangeUtil(si * 2 + 1, ss, mid, us, ue, diff);
updateRangeUtil(si * 2 + 2, mid + 1, se, us, ue, diff);
// And use the result of children calls to update this
// node
tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2];
}
// Function to update a range of values in segment
// tree
/* us and eu -> starting and ending indexes of update query
ue -> ending index of update query
diff -> which we need to add in the range us to ue */
void updateRange(int n, int us, int ue, int diff) {
updateRangeUtil(0, 0, n - 1, us, ue, diff);
}
/* A recursive function to get the sum of values in given
range of the array. The following are parameters for
this function.
si --> Index of current node in the segment tree.
Initially 0 is passed as root is always at'
index 0
ss & se --> Starting and ending indexes of the
segment represented by current node,
i.e., tree[si]
qs & qe --> Starting and ending indexes of query
range */
int getSumUtil(int ss, int se, int qs, int qe, int si) {
// If lazy flag is set for current node of segment tree,
// then there are some pending updates. So we need to
// make sure that the pending updates are done before
// processing the sub sum query
if (lazy[si] != 0) {
// Make pending updates to this node. Note that this
// node represents sum of elements in arr[ss..se] and
// all these elements must be increased by lazy[si]
tree[si] += (se - ss + 1) * lazy[si];
// checking if it is not leaf node because if
// it is leaf node then we cannot go further
if (ss != se) {
// Since we are not yet updating children os si,
// we need to set lazy values for the children
lazy[si * 2 + 1] += lazy[si];
lazy[si * 2 + 2] += lazy[si];
}
// unset the lazy value for current node as it has
// been updated
lazy[si] = 0;
}
// Out of range
if (ss > se || ss > qe || se < qs)
return 0;
// At this point sure, pending lazy updates are done
// for current node. So we can return value (same as
// was for query in our previous post)
// If this segment lies in range
if (ss >= qs && se <= qe)
return tree[si];
// If a part of this segment overlaps with the given
// range
int mid = (ss + se) / 2;
return getSumUtil(ss, mid, qs, qe, 2 * si + 1) +
getSumUtil(mid + 1, se, qs, qe, 2 * si + 2);
}
// Return sum of elements in range from index qs (query
// start) to qe (query end). It mainly uses getSumUtil()
int getSum(int n, int qs, int qe) {
// Check for erroneous input values
if (qs < 0 || qe > n - 1 || qs > qe) {
return 0;
}
return getSumUtil(0, n - 1, qs, qe, 0);
}
/* A recursive function that constructs Segment Tree for
array[ss..se]. si is index of current node in segment
tree st. */
void constructSTUtil(int arr[], int ss, int se, int si) {
// out of range as ss can never be greater than se
if (ss > se)
return;
/* If there is one element in array, store it in
current node of segment tree and return */
if (ss == se) {
tree[si] = arr[ss];
return;
}
/* If there are more than one elements, then recur
for left and right subtrees and store the sum
of values in this node */
int mid = (ss + se) / 2;
constructSTUtil(arr, ss, mid, si * 2 + 1);
constructSTUtil(arr, mid + 1, se, si * 2 + 2);
tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2];
}
/* Function to construct segment tree from given array.
This function allocates memory for segment tree and
calls constructSTUtil() to fill the allocated memory */
void constructST(int arr[], int n) {
// Fill the allocated memory st
constructSTUtil(arr, 0, n - 1, 0);
}
}