-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathnormalize_error.py
104 lines (94 loc) · 4.38 KB
/
normalize_error.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#encoding:utf-8
'''
根据valid.csv pred.csv评价效果
两个csv文件格式与提交格式相同
'''
import pandas as pd
import math
import numpy as np
def distance(x1,y1,x2,y2):
l1 = math.pow((x1-x2),2)
l2 = math.pow((y1-y2),2)
return math.sqrt(l1+l2)
target = pd.read_csv('valid.csv')
# target = pd.read_csv('testb_label.csv')
# pred = pd.read_csv('fusemodel/predblouseargmax.csv')
pred = pd.read_csv('pred-merge.csv')
# pred = pd.read_csv('pred-cpn.csv')
# target = pd.DataFrame([['0000001.jpg','trousers','430_284_0','713_303_0','560_537_1','560_626_1','361_588_1','573_622_1','-1_-1_-1'],
# ['0000002.jpg','trousers','359_301_1','464_297_1','417_403_1','340_669_1','308_658_1','456_713_1','491_714_1']],
# columns=['image_id','image_category','waistband_left','waistband_right','crotch','bottom_left_in','bottom_left_out','bottom_right_in','bottom_right_out'])
# pred = pd.DataFrame([['0000001.jpg','trousers','430_294_0','713_323_0','560_567_1','560_666_1','361_638_1','573_682_1','123_345_1'],
# ['0000002.jpg','trousers','359_311_1','464_317_1','417_433_1','340_709_1','308_708_1','456_773_1','491_784_1']],
# columns=['image_id','image_category','waistband_left','waistband_right','crotch','bottom_left_in','bottom_left_out','bottom_right_in','bottom_right_out'])
numAnno = len(target)
blouse_part = ['neckline_left','neckline_right','center_front','shoulder_left','shoulder_right',
'armpit_left','armpit_right','cuff_left_in','cuff_left_out','cuff_right_in',
'cuff_right_out','top_hem_left','top_hem_right']
trousers_part = ['waistband_left','waistband_right','crotch','bottom_left_in','bottom_left_out','bottom_right_in','bottom_right_out']
outwear_part = ['neckline_left','neckline_right','shoulder_left','shoulder_right','armpit_left','armpit_right',
'waistline_left','waistline_right','cuff_left_in','cuff_left_out','cuff_right_in','cuff_right_out','top_hem_left','top_hem_right']
skirt_part = ['waistband_left','waistband_right','hemline_left','hemline_right']
dress_part = ['neckline_left','neckline_right','shoulder_left','shoulder_right','center_front','armpit_left','armpit_right',
'waistline_left','waistline_right','cuff_left_in','cuff_left_out','cuff_right_in','cuff_right_out','hemline_left','hemline_right']
part_name = {'trousers':trousers_part,'blouse':blouse_part,'outwear':outwear_part,'skirt':skirt_part,'dress':dress_part}
NEsum = 0
count_vis = 0
count = 0
diffMean = np.zeros(2)
j = 0
for i in range(numAnno):
anno = target.ix[i]
class_name = anno['image_category']
# if class_name != 'blouse': #如果只测试一种类别,把这里取消注释
# continue
result = pred.ix[i]
# print(anno['image_id'])
assert anno['image_id'] == result['image_id'] #出错一般是编号没有对其,检查i j
# print(anno['image_id'])
if class_name == 'trousers' or class_name == 'skirt':
# print('waistband')
x1,y1,_ = anno['waistband_left'].split('_')
x2,y2,_ = anno['waistband_right'].split('_')
if class_name == 'blouse' or class_name == 'outwear' or class_name == 'dress':
# print('armpit')
x1,y1,_ = anno['armpit_left'].split('_')
x2,y2,_ = anno['armpit_right'].split('_')
x1,y1,x2,y2 = float(x1), float(y1), float(x2), float(y2)
normalize = distance(x1,y1,x2,y2)
if(normalize==0):
print('WTF')
normalize = 100.0
pts = []
pts_pred = []
visiable_count = 0
for part in part_name[class_name]:
xt,yt,visiable = anno[part].split('_')
visiable = int(visiable)
visiable_count += visiable
xp,yp,_ = result[part].split('_')
if visiable == 1:
pts.append((float(xt),float(yt)))
# pts_pred.append((float(xp)-0,float(yp)-2))
pts_pred.append((float(xp)+0.,float(yp)-0.)) #弥补统计偏差x_offset后的效果?
if visiable_count==0:
j += 1
continue
pts = np.array(pts)
pts_pred = np.array(pts_pred)
# pts_pred = np.around(pts_pred).astype(np.int32)
diff_mean = pts-pts_pred
diffMean += np.mean(diff_mean,0)#统计偏差x_offset,y_offset用的
diff = (pts-pts_pred) ** 2
# print(diff)
diss = np.sqrt( np.sum(diff,1) )
total_diss = np.sum(diss)
NE = total_diss/normalize#/len(pts)
NEsum += NE
count_vis += len(pts)
count += 1
j += 1
NEsum = NEsum/count_vis
diffMean = diffMean/count
print('NE: {}'.format(NEsum))
print(diffMean)