-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhf_train.py
100 lines (88 loc) · 2.75 KB
/
hf_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
"""Train File."""
# Imports
import argparse
import os
from omegaconf import OmegaConf
from transformers import Trainer, TrainingArguments
from src.datasets import *
from src.models import *
from src.modules.metrics import *
from src.utils.mapper import configmapper
from src.utils.misc import seed
# Config
parser = argparse.ArgumentParser(
prog="train.py", description="Train a model with HF Trainer."
)
parser.add_argument(
"--config_dir", type=str, action="store", help="The directory for all config files."
)
# parser.add_argument(
# "--model",
# type=str,
# action="store",
# help="The configuration for model",
# )
# parser.add_argument(
# "--train",
# type=str,
# action="store",
# help="The configuration for model training/evaluation",
# )
# parser.add_argument(
# "--data",
# type=str,
# action="store",
# help="The configuration for data",
# )
args = parser.parse_args()
model_config = OmegaConf.load(os.path.join(args.config_dir, "model.yaml"))
train_config = OmegaConf.load(os.path.join(args.config_dir, "train.yaml"))
data_config = OmegaConf.load(os.path.join(args.config_dir, "dataset.yaml"))
# Seed
seed(train_config.args.seed) # just in case
# Data
if "main" in dict(data_config).keys(): # Regular Data
train_data_config = data_config.train
val_data_config = data_config.val
train_data = configmapper.get_object("datasets", train_data_config.name)(
train_data_config
)
val_data = configmapper.get_object("datasets", val_data_config.name)(
val_data_config
)
else: # HF Type Data
dataset = configmapper.get_object("datasets", data_config.name)(data_config)
train_data = dataset.train_dataset["train"]
val_data = dataset.train_dataset["test"]
# Model
model = configmapper.get_object("models", model_config.name)(model_config)
args = TrainingArguments(**OmegaConf.to_container(train_config.args, resolve=True))
# Checking for Checkpoints
if not os.path.exists(train_config.args.output_dir):
os.makedirs(train_config.args.output_dir)
checkpoints = sorted(
os.listdir(train_config.args.output_dir), key=lambda x: int(x.split("-")[1])
)
if len(checkpoints) != 0:
print("Found Checkpoints:")
print(checkpoints)
# Trainer
trainer = Trainer(
model=model,
args=args,
train_dataset=train_data,
eval_dataset=val_data,
compute_metrics=configmapper.get_object(
"metrics", train_config.metric
).compute_metrics,
)
# Train
if len(checkpoints) != 0:
trainer.train(
os.path.join(train_config.args.output_dir, checkpoints[-1])
) # Load from checkpoint
else:
trainer.train()
if not os.path.exists(train_config.save_model_path):
os.makedirs(train_config.save_model_path)
trainer.save_model(train_config.save_model_path)