-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmean_calculator.py
43 lines (32 loc) · 1.02 KB
/
mean_calculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
from tqdm import tqdm
from src.datasets import Covid, Mnist, Socofing
from src.utils.configuration import Config
def get_image_sum(image):
if image.shape[0] == 3:
return np.sum(image, axis=(1, 2))
else:
return np.sum(image)
config = Config(path="configs/custom_trainer/image/cnn_covid/dataset.yaml")
dataset = Covid(config.train)
# config = Config(path='configs/custom_trainer/demo/dataset.yaml')
# dataset = Mnist(config.train)
mean = None
meansq = None
count = 0
for index, sample in tqdm(enumerate(dataset)):
image = sample["image"].numpy()
if mean is None:
mean = get_image_sum(image)
else:
mean += get_image_sum(image)
if meansq is None:
meansq = get_image_sum(image ** 2)
else:
meansq += get_image_sum(image ** 2)
count += image.shape[1] * image.shape[2]
total_mean = mean / count
total_var = (meansq / count) - (total_mean ** 2)
total_std = np.sqrt(total_var)
print("mean: " + str(total_mean))
print("std: " + str(total_std))