From 7aca36cfe234651fa0bd76e70f35336b1172808c Mon Sep 17 00:00:00 2001
From: Avdhesh-Varshney <114330097+Avdhesh-Varshney@users.noreply.github.com>
Date: Sun, 7 Jan 2024 01:11:07 +0530
Subject: [PATCH] =?UTF-8?q?Singaporean=20Cryptocurrency=20Analysis=20?=
=?UTF-8?q?=F0=9F=93=9C?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
---
.../Dataset/README.md | 1 +
.../Models/README.md | 47 +
.../singaporean_cryptocurrency_analysis.ipynb | 5429 +++++++++++++++++
.../requirements.txt | 8 +
4 files changed, 5485 insertions(+)
create mode 100644 Singaporean Cryptocurrency Analysis/Dataset/README.md
create mode 100644 Singaporean Cryptocurrency Analysis/Models/README.md
create mode 100644 Singaporean Cryptocurrency Analysis/Models/singaporean_cryptocurrency_analysis.ipynb
create mode 100644 Singaporean Cryptocurrency Analysis/requirements.txt
diff --git a/Singaporean Cryptocurrency Analysis/Dataset/README.md b/Singaporean Cryptocurrency Analysis/Dataset/README.md
new file mode 100644
index 000000000..1ae4d2ae5
--- /dev/null
+++ b/Singaporean Cryptocurrency Analysis/Dataset/README.md
@@ -0,0 +1 @@
+The Dataset is used here is taken from the Kaggle database website. You can download the file from the link given here, [Singaporean Cryptocurrency Analysis](https://www.kaggle.com/datasets/imperialwarrior/singapore-crypto)
diff --git a/Singaporean Cryptocurrency Analysis/Models/README.md b/Singaporean Cryptocurrency Analysis/Models/README.md
new file mode 100644
index 000000000..a87777224
--- /dev/null
+++ b/Singaporean Cryptocurrency Analysis/Models/README.md
@@ -0,0 +1,47 @@
+
Singaporean Cryptocurrency Anlaysis
+
+**GOAL**
+
+To analyze the Singaporean Dataset using Exploratory Data analysis.
+
+**DATASET**
+
+https://www.kaggle.com/datasets/imperialwarrior/singapore-crypto
+
+**DESCRIPTION**
+
+To analyze the dataset of Singaporean Cryptocurrency Analysis
+
+**WHAT I HAD DONE**
+
+* Checked for first dataset values out of 7537 datasets.
+* Checked for missing values and cleaned the data accordingly.
+* Analyzed the data, found insights and visualized them accordingly.
+* Found detailed insights of different columns with target variable using plotting libraries.
+* Train the datasets by different models and saves their accuracies into a dataframe.
+
+
+**LIBRARIES NEEDED**
+
+1. Pandas
+2. Plotly
+3. Sklearn
+4. NumPy
+5. XGBoost
+6. Tensorflow
+7. Keras
+
+
+**CONCLUSION**
+
+- Linear Regression and Decision Tree Regression Models are best fitted to the datasets.
+- Accuracy achieved is around 99.5 %.
+- LSTM Model also perfoms well on the datasets as their MSE and R2 scores are very much good.
+
+
+**YOUR NAME**
+
+*Avdhesh Varshney*
+
+[![LinkedIn](https://img.shields.io/badge/linkedin-%230077B5.svg?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/avdhesh-varshney-5314a4233/) [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/Avdhesh-Varshney)
+
diff --git a/Singaporean Cryptocurrency Analysis/Models/singaporean_cryptocurrency_analysis.ipynb b/Singaporean Cryptocurrency Analysis/Models/singaporean_cryptocurrency_analysis.ipynb
new file mode 100644
index 000000000..44daed41f
--- /dev/null
+++ b/Singaporean Cryptocurrency Analysis/Models/singaporean_cryptocurrency_analysis.ipynb
@@ -0,0 +1,5429 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "provenance": [],
+ "gpuType": "T4"
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ },
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "RauUxNMxrQiM",
+ "outputId": "967e30ee-f8fb-45ef-e375-c2a675a08ca3"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Mount google drive in colab\n",
+ "from google.colab import drive\n",
+ "drive.mount('/content/drive')\n",
+ "\n",
+ "# Connect kaggle in colab\n",
+ "!pip install -q kaggle\n",
+ "!mkdir -p ~/.kaggle\n",
+ "!cp /content/drive/MyDrive/kaggle.json ~/.kaggle/\n",
+ "!chmod 600 ~/.kaggle/kaggle.json\n",
+ "\n",
+ "# Set the environment variable for Kaggle API key\n",
+ "import os\n",
+ "os.environ['KAGGLE_CONFIG_DIR'] = '/root/.kaggle/'\n",
+ "\n",
+ "# Now you can use Kaggle API to download datasets\n",
+ "import kaggle\n",
+ "kaggle.api.authenticate()\n",
+ "\n",
+ "# Replace 'username/dataset-name' with the actual dataset you want to download\n",
+ "kaggle.api.dataset_download_files('imperialwarrior/singapore-crypto', unzip=True)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Singaporean Cryptocurrency Analysis using DL\n",
+ "\n",
+ "- Dataset from Kaggle [Link](https://www.kaggle.com/datasets/imperialwarrior/singapore-crypto?rvi=1)"
+ ],
+ "metadata": {
+ "id": "jB7MgbYaRcgg"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Importing necessary Modules and Libraries"
+ ],
+ "metadata": {
+ "id": "g-yNQMaqRxgZ"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import os\n",
+ "\n",
+ "import plotly.graph_objects as go\n",
+ "\n",
+ "from sklearn import preprocessing\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "\n",
+ "# Different models\n",
+ "from sklearn.linear_model import LinearRegression, Ridge\n",
+ "from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor\n",
+ "from sklearn.tree import DecisionTreeRegressor\n",
+ "from xgboost import XGBRegressor\n"
+ ],
+ "metadata": {
+ "id": "33FptWydrjoD"
+ },
+ "execution_count": 2,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## Reading `metadata.csv` file\n",
+ "- It contains information about the Bit coin Pair Name and Bit Coin Pair Symbol.\n",
+ "- Along with that it also contains the `Filename` of that bitcoin dataset."
+ ],
+ "metadata": {
+ "id": "b5ylP7S0R2_I"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df = pd.read_csv('/content/metadata.csv')\n",
+ "print(df.shape)\n",
+ "df.head()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 223
+ },
+ "id": "poU84R80sXKE",
+ "outputId": "fb2fd440-b18e-426d-8e09-940b27514eae"
+ },
+ "execution_count": 3,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "(7537, 3)\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Coin Pair Name Coin Pair Symbol Filename\n",
+ "0 Bitcoin SGD BTC-SGD BTC-SGD.csv\n",
+ "1 Ethereum SGD ETH-SGD ETH-SGD.csv\n",
+ "2 Tether USDt SGD USDT-SGD USDT-SGD.csv\n",
+ "3 BNB SGD BNB-SGD BNB-SGD.csv\n",
+ "4 USD Coin SGD USDC-SGD USDC-SGD.csv"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Coin Pair Name | \n",
+ " Coin Pair Symbol | \n",
+ " Filename | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " Bitcoin SGD | \n",
+ " BTC-SGD | \n",
+ " BTC-SGD.csv | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " Ethereum SGD | \n",
+ " ETH-SGD | \n",
+ " ETH-SGD.csv | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " Tether USDt SGD | \n",
+ " USDT-SGD | \n",
+ " USDT-SGD.csv | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " BNB SGD | \n",
+ " BNB-SGD | \n",
+ " BNB-SGD.csv | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " USD Coin SGD | \n",
+ " USDC-SGD | \n",
+ " USDC-SGD.csv | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 3
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Reading about basic information of file `metadata.csv` like, unique values corresponding to the different columns."
+ ],
+ "metadata": {
+ "id": "zy-Y2EDUSYQJ"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "print(len(df['Coin Pair Name'].unique()))\n",
+ "print(len(df['Coin Pair Symbol'].unique()))\n",
+ "print(len(df['Filename'].unique()))"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "jWLkbg_0sdYc",
+ "outputId": "7842b926-d541-416e-d8a3-1fd0a530cebe"
+ },
+ "execution_count": 4,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "7474\n",
+ "7537\n",
+ "7537\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Let's see the dataset of index 0 i.e., First dataset"
+ ],
+ "metadata": {
+ "id": "W_vOckfvS5kw"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "data = pd.read_csv(os.path.join('/content/data/', df['Filename'][0]))\n",
+ "print(f'Unique elements correspond to Name = {len(data[\"Name\"].unique())}')\n",
+ "print(f'Unique elements correspond to Symbol = {len(data[\"Symbol\"].unique())}')\n",
+ "print(f'Shape: ', data.shape)\n",
+ "data.head()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 258
+ },
+ "id": "x6yxJsGwmh6r",
+ "outputId": "cba0a0c4-cd72-4db3-d673-989e085747d6"
+ },
+ "execution_count": 5,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Unique elements correspond to Name = 1\n",
+ "Unique elements correspond to Symbol = 1\n",
+ "Shape: (3383, 9)\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Name Symbol Date Open High Low \\\n",
+ "0 Bitcoin SGD BTC-SGD 2014-09-17 588.148647 591.064995 571.178236 \n",
+ "1 Bitcoin SGD BTC-SGD 2014-09-18 579.204817 579.204817 523.731201 \n",
+ "2 Bitcoin SGD BTC-SGD 2014-09-19 537.202785 541.930028 487.079011 \n",
+ "3 Bitcoin SGD BTC-SGD 2014-09-20 499.924402 536.180566 493.856994 \n",
+ "4 Bitcoin SGD BTC-SGD 2014-09-21 516.913098 522.411760 498.034510 \n",
+ "\n",
+ " Close Adj Close Volume \n",
+ "0 577.379609 577.379609 21056800 \n",
+ "1 538.102924 538.102924 34483200 \n",
+ "2 500.080185 500.080185 37919700 \n",
+ "3 517.950509 517.950509 36863600 \n",
+ "4 505.178603 505.178603 26580100 "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Name | \n",
+ " Symbol | \n",
+ " Date | \n",
+ " Open | \n",
+ " High | \n",
+ " Low | \n",
+ " Close | \n",
+ " Adj Close | \n",
+ " Volume | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " Bitcoin SGD | \n",
+ " BTC-SGD | \n",
+ " 2014-09-17 | \n",
+ " 588.148647 | \n",
+ " 591.064995 | \n",
+ " 571.178236 | \n",
+ " 577.379609 | \n",
+ " 577.379609 | \n",
+ " 21056800 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " Bitcoin SGD | \n",
+ " BTC-SGD | \n",
+ " 2014-09-18 | \n",
+ " 579.204817 | \n",
+ " 579.204817 | \n",
+ " 523.731201 | \n",
+ " 538.102924 | \n",
+ " 538.102924 | \n",
+ " 34483200 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " Bitcoin SGD | \n",
+ " BTC-SGD | \n",
+ " 2014-09-19 | \n",
+ " 537.202785 | \n",
+ " 541.930028 | \n",
+ " 487.079011 | \n",
+ " 500.080185 | \n",
+ " 500.080185 | \n",
+ " 37919700 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " Bitcoin SGD | \n",
+ " BTC-SGD | \n",
+ " 2014-09-20 | \n",
+ " 499.924402 | \n",
+ " 536.180566 | \n",
+ " 493.856994 | \n",
+ " 517.950509 | \n",
+ " 517.950509 | \n",
+ " 36863600 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " Bitcoin SGD | \n",
+ " BTC-SGD | \n",
+ " 2014-09-21 | \n",
+ " 516.913098 | \n",
+ " 522.411760 | \n",
+ " 498.034510 | \n",
+ " 505.178603 | \n",
+ " 505.178603 | \n",
+ " 26580100 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 5
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "data.drop(columns=['Name', 'Symbol'], inplace=True)\n",
+ "data.Date = pd.to_datetime(data.Date)\n",
+ "data.info()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "2RSenh-r_rF5",
+ "outputId": "bac5b018-f7b1-450f-f058-5cb7b12b55d3"
+ },
+ "execution_count": 6,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "\n",
+ "RangeIndex: 3383 entries, 0 to 3382\n",
+ "Data columns (total 7 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 Date 3383 non-null datetime64[ns]\n",
+ " 1 Open 3383 non-null float64 \n",
+ " 2 High 3383 non-null float64 \n",
+ " 3 Low 3383 non-null float64 \n",
+ " 4 Close 3383 non-null float64 \n",
+ " 5 Adj Close 3383 non-null float64 \n",
+ " 6 Volume 3383 non-null int64 \n",
+ "dtypes: datetime64[ns](1), float64(5), int64(1)\n",
+ "memory usage: 185.1 KB\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Declaring some global variables after watching the datasets."
+ ],
+ "metadata": {
+ "id": "AxOES7JCSrdP"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "filePath = '/content/data/'\n",
+ "target = 'Close'\n",
+ "check = 5\n",
+ "testSize = 0.2\n",
+ "\n",
+ "# Training only first 25 Datasets out of 7537 datasets.\n",
+ "limit = 25\n",
+ "models = {\n",
+ " 'Linear Regression': LinearRegression(),\n",
+ " 'Ridge Regression': Ridge(),\n",
+ " 'Random Forest Regressor': RandomForestRegressor(),\n",
+ " 'Decision Tree Regressor': DecisionTreeRegressor(),\n",
+ " 'Gradient Boosting Regressor': GradientBoostingRegressor(),\n",
+ " 'XGBoost Regressor': XGBRegressor(objective ='reg:squarederror')\n",
+ "}"
+ ],
+ "metadata": {
+ "id": "LXvpXMrmXnDk"
+ },
+ "execution_count": 7,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Function which can plot the graph of the dataset"
+ ],
+ "metadata": {
+ "id": "d1DNVpl0U1WV"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "def plotGraph(data, name):\n",
+ " figure = go.Figure(data=[go.Candlestick(x=data['Date'],\n",
+ " open=data['Open'],\n",
+ " high=data['High'],\n",
+ " low=data['Low'],\n",
+ " close=data['Close'])])\n",
+ "\n",
+ " figure.update_layout(title=name, xaxis_rangeslider_visible=False)\n",
+ " figure.show()"
+ ],
+ "metadata": {
+ "id": "jI6C5BjA6QRg"
+ },
+ "execution_count": 8,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Splitting the dataset into training, testing, and validation dataset."
+ ],
+ "metadata": {
+ "id": "qVfgfnzXU7hm"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "def splitData(dataFrame, testSize=0.2):\n",
+ " # Preprocessing the datasets\n",
+ " x = dataFrame[[\"Open\", \"High\", \"Low\", \"Volume\"]]\n",
+ " y = dataFrame[target]\n",
+ " x = x.to_numpy()\n",
+ " y = y.to_numpy()\n",
+ " y = y.reshape(-1, 1)\n",
+ "\n",
+ " # Split the dataset into training and testing sets using train_test_split\n",
+ " xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=testSize, random_state=42)\n",
+ "\n",
+ " response = [xtrain, xtest, ytrain, ytest]\n",
+ " return response\n"
+ ],
+ "metadata": {
+ "id": "KgZlYE_67wGZ"
+ },
+ "execution_count": 9,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Function to train the model and return the accuracy to that corresponding dataset."
+ ],
+ "metadata": {
+ "id": "M5SQ7mkcVP88"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "def trainModel(xtrain, xtest, ytrain, ytest, fileName):\n",
+ " # Create an empty DataFrame to store accuracy for the current dataset\n",
+ " datasetAccuracy = pd.DataFrame(columns=['Dataset'] + list(models.keys()))\n",
+ "\n",
+ " # Store the dataset name\n",
+ " datasetAccuracy['Dataset'] = [fileName]\n",
+ "\n",
+ " for modelName, model in models.items():\n",
+ " # Fit the model\n",
+ " model.fit(xtrain, ytrain)\n",
+ "\n",
+ " # Check the accuracy of the model and its forecasting\n",
+ " score = model.score(xtest, ytest)\n",
+ "\n",
+ " # Store the accuracy in the DataFrame\n",
+ " datasetAccuracy[modelName] = [score]\n",
+ "\n",
+ " return datasetAccuracy\n"
+ ],
+ "metadata": {
+ "id": "VqT_ouIS5XKB"
+ },
+ "execution_count": 10,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Function to train the dataset on all the models and get the accuracies on different models."
+ ],
+ "metadata": {
+ "id": "yZyi6wdNDacU"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "def trainModels(dataFrame):\n",
+ " # Initialize an empty DataFrame to store accuracy results\n",
+ " accuracyDF = pd.DataFrame(columns=['Dataset'] + list(models.keys()))\n",
+ "\n",
+ " # Iterate over only limited datasets\n",
+ " for i in dataFrame.index:\n",
+ " if i >= limit:\n",
+ " break\n",
+ "\n",
+ " # For a single dataset\n",
+ " fileName = dataFrame['Filename'][i]\n",
+ " data = pd.read_csv(os.path.join(filePath, fileName))\n",
+ "\n",
+ " # Let's plot the graph of the ith dataset\n",
+ " plotGraph(data, fileName)\n",
+ "\n",
+ " # Split dataset for training and testing purpose\n",
+ " xtrain, xtest, ytrain, ytest = splitData(data)\n",
+ "\n",
+ " # Now, train the model and get the accuracy of all the models\n",
+ " datasetAccuracy = trainModel(xtrain, xtest, ytrain, ytest, fileName[slice(-4)])\n",
+ "\n",
+ " # Append the accuracy for the current dataset to the overall DataFrame\n",
+ " accuracyDF = accuracyDF.append(datasetAccuracy, ignore_index=True)\n",
+ "\n",
+ " return accuracyDF"
+ ],
+ "metadata": {
+ "id": "R7smfeAT9S1X"
+ },
+ "execution_count": 11,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Calling the function to train the models on the limited dataset\n",
+ "\n",
+ "(because lack of resouces like GPU, RAM, etc.)"
+ ],
+ "metadata": {
+ "id": "0br1OWyEWdZb"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Call the trainModels function\n",
+ "accuracies = trainModels(df)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "id": "WNPhYEVS-9lK",
+ "outputId": "dfe8b27d-5244-4f4f-c994-5bb5e511c2c5"
+ },
+ "execution_count": 12,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning:\n",
+ "\n",
+ "Ill-conditioned matrix (rcond=1.46304e-17): result may not be accurate.\n",
+ "\n",
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning:\n",
+ "\n",
+ "Ill-conditioned matrix (rcond=4.02119e-25): result may not be accurate.\n",
+ "\n",
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning:\n",
+ "\n",
+ "Ill-conditioned matrix (rcond=1.3842e-17): result may not be accurate.\n",
+ "\n",
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning:\n",
+ "\n",
+ "Ill-conditioned matrix (rcond=1.60799e-28): result may not be accurate.\n",
+ "\n",
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning:\n",
+ "\n",
+ "Ill-conditioned matrix (rcond=1.44375e-22): result may not be accurate.\n",
+ "\n",
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning:\n",
+ "\n",
+ "Ill-conditioned matrix (rcond=3.05175e-22): result may not be accurate.\n",
+ "\n",
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning:\n",
+ "\n",
+ "Ill-conditioned matrix (rcond=4.04878e-23): result may not be accurate.\n",
+ "\n",
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning:\n",
+ "\n",
+ "Ill-conditioned matrix (rcond=1.68924e-18): result may not be accurate.\n",
+ "\n",
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning:\n",
+ "\n",
+ "Ill-conditioned matrix (rcond=3.67734e-22): result may not be accurate.\n",
+ "\n",
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning:\n",
+ "\n",
+ "Ill-conditioned matrix (rcond=1.78396e-17): result may not be accurate.\n",
+ "\n",
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning:\n",
+ "\n",
+ "Ill-conditioned matrix (rcond=1.07982e-20): result may not be accurate.\n",
+ "\n",
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning:\n",
+ "\n",
+ "Ill-conditioned matrix (rcond=1.94815e-19): result may not be accurate.\n",
+ "\n",
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning:\n",
+ "\n",
+ "Ill-conditioned matrix (rcond=1.89242e-21): result may not be accurate.\n",
+ "\n",
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning:\n",
+ "\n",
+ "Ill-conditioned matrix (rcond=3.89996e-18): result may not be accurate.\n",
+ "\n",
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning:\n",
+ "\n",
+ "Ill-conditioned matrix (rcond=2.63595e-22): result may not be accurate.\n",
+ "\n",
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning:\n",
+ "\n",
+ "Ill-conditioned matrix (rcond=1.29537e-21): result may not be accurate.\n",
+ "\n",
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning:\n",
+ "\n",
+ "Ill-conditioned matrix (rcond=9.59135e-18): result may not be accurate.\n",
+ "\n",
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning:\n",
+ "\n",
+ "Ill-conditioned matrix (rcond=1.48274e-20): result may not be accurate.\n",
+ "\n",
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning:\n",
+ "\n",
+ "Ill-conditioned matrix (rcond=2.12519e-21): result may not be accurate.\n",
+ "\n",
+ ":10: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_gb.py:437: DataConversionWarning:\n",
+ "\n",
+ "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ "\n",
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Save accuracies of the whole training results into a single csv file named `results.csv`"
+ ],
+ "metadata": {
+ "id": "GJ7rgBoqW4CO"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "accuracies.to_csv('results.csv', index=False)"
+ ],
+ "metadata": {
+ "id": "IcEb_Q-lCsD8"
+ },
+ "execution_count": 13,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Let us see the saved dataset `results.csv`"
+ ],
+ "metadata": {
+ "id": "NMCYUICyXbb9"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "resultsData = pd.read_csv('results.csv')\n",
+ "print(\"Accuracies of Different models on different datasets!\")\n",
+ "resultsData"
+ ],
+ "metadata": {
+ "id": "QOGwvRHOXiT1",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 885
+ },
+ "outputId": "ebd66848-187c-4551-c4d3-25ecad5653bc"
+ },
+ "execution_count": 14,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Accuracies of Different models on different datasets!\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Dataset Linear Regression Ridge Regression \\\n",
+ "0 BTC-SGD 0.999703 0.999703 \n",
+ "1 ETH-SGD 0.999311 0.999311 \n",
+ "2 USDT-SGD 0.973631 0.931483 \n",
+ "3 BNB-SGD 0.999381 0.999381 \n",
+ "4 USDC-SGD 0.976592 0.880117 \n",
+ "5 XRP-SGD 0.986789 0.990231 \n",
+ "6 STETH-SGD 0.997152 0.997152 \n",
+ "7 ADA-SGD 0.998844 0.998843 \n",
+ "8 DOGE-SGD 0.997532 0.996282 \n",
+ "9 WTRX-SGD 0.993193 0.520164 \n",
+ "10 SOL-SGD 0.998861 0.998861 \n",
+ "11 TRX-SGD 0.994416 0.970182 \n",
+ "12 TON11419-SGD 0.987901 0.986923 \n",
+ "13 DAI-SGD 0.956892 0.863366 \n",
+ "14 DOT-SGD 0.997157 0.997160 \n",
+ "15 MATIC-SGD 0.998655 0.998550 \n",
+ "16 LTC-SGD 0.998378 0.998378 \n",
+ "17 WBTC-SGD 0.998118 0.998118 \n",
+ "18 SHIB-SGD 0.997543 0.348902 \n",
+ "19 BCH-SGD 0.998268 0.998268 \n",
+ "20 XLM-SGD 0.996184 0.994903 \n",
+ "21 LEO-SGD 0.998021 0.997750 \n",
+ "22 AVAX-SGD 0.997976 0.997976 \n",
+ "23 LINK-SGD 0.998810 0.998809 \n",
+ "24 TUSD-SGD 0.922381 0.877465 \n",
+ "\n",
+ " Random Forest Regressor Decision Tree Regressor \\\n",
+ "0 0.999468 0.999053 \n",
+ "1 0.998623 0.998094 \n",
+ "2 0.965214 0.950597 \n",
+ "3 0.998764 0.998167 \n",
+ "4 0.980140 0.969791 \n",
+ "5 0.991697 0.987660 \n",
+ "6 0.995287 0.993184 \n",
+ "7 0.998173 0.995809 \n",
+ "8 0.996732 0.995176 \n",
+ "9 0.985621 0.979841 \n",
+ "10 0.997650 0.997153 \n",
+ "11 0.981699 0.985031 \n",
+ "12 0.980488 0.955144 \n",
+ "13 0.969210 0.955764 \n",
+ "14 0.996588 0.993182 \n",
+ "15 0.996827 0.993972 \n",
+ "16 0.997971 0.995632 \n",
+ "17 0.992431 0.997462 \n",
+ "18 0.977479 0.956806 \n",
+ "19 0.995707 0.992923 \n",
+ "20 0.995776 0.989450 \n",
+ "21 0.991283 0.989968 \n",
+ "22 0.995018 0.990893 \n",
+ "23 0.997424 0.995608 \n",
+ "24 0.976368 0.961560 \n",
+ "\n",
+ " Gradient Boosting Regressor XGBoost Regressor \n",
+ "0 0.999401 0.999357 \n",
+ "1 0.998480 0.998446 \n",
+ "2 0.963910 0.966679 \n",
+ "3 0.998875 0.998626 \n",
+ "4 0.977137 0.979106 \n",
+ "5 0.991987 0.991860 \n",
+ "6 0.995217 0.994591 \n",
+ "7 0.997596 0.997686 \n",
+ "8 0.996231 0.994917 \n",
+ "9 0.986519 0.981738 \n",
+ "10 0.997514 0.997196 \n",
+ "11 0.984792 0.980132 \n",
+ "12 0.981399 0.974923 \n",
+ "13 0.970992 0.966129 \n",
+ "14 0.996363 0.995526 \n",
+ "15 0.997526 0.996792 \n",
+ "16 0.997830 0.996950 \n",
+ "17 0.994908 0.991558 \n",
+ "18 0.983012 -0.004916 \n",
+ "19 0.995370 0.994136 \n",
+ "20 0.993943 0.995530 \n",
+ "21 0.994527 0.995926 \n",
+ "22 0.995090 0.994441 \n",
+ "23 0.997546 0.996198 \n",
+ "24 0.964749 0.965890 "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Dataset | \n",
+ " Linear Regression | \n",
+ " Ridge Regression | \n",
+ " Random Forest Regressor | \n",
+ " Decision Tree Regressor | \n",
+ " Gradient Boosting Regressor | \n",
+ " XGBoost Regressor | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " BTC-SGD | \n",
+ " 0.999703 | \n",
+ " 0.999703 | \n",
+ " 0.999468 | \n",
+ " 0.999053 | \n",
+ " 0.999401 | \n",
+ " 0.999357 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " ETH-SGD | \n",
+ " 0.999311 | \n",
+ " 0.999311 | \n",
+ " 0.998623 | \n",
+ " 0.998094 | \n",
+ " 0.998480 | \n",
+ " 0.998446 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " USDT-SGD | \n",
+ " 0.973631 | \n",
+ " 0.931483 | \n",
+ " 0.965214 | \n",
+ " 0.950597 | \n",
+ " 0.963910 | \n",
+ " 0.966679 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " BNB-SGD | \n",
+ " 0.999381 | \n",
+ " 0.999381 | \n",
+ " 0.998764 | \n",
+ " 0.998167 | \n",
+ " 0.998875 | \n",
+ " 0.998626 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " USDC-SGD | \n",
+ " 0.976592 | \n",
+ " 0.880117 | \n",
+ " 0.980140 | \n",
+ " 0.969791 | \n",
+ " 0.977137 | \n",
+ " 0.979106 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " XRP-SGD | \n",
+ " 0.986789 | \n",
+ " 0.990231 | \n",
+ " 0.991697 | \n",
+ " 0.987660 | \n",
+ " 0.991987 | \n",
+ " 0.991860 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " STETH-SGD | \n",
+ " 0.997152 | \n",
+ " 0.997152 | \n",
+ " 0.995287 | \n",
+ " 0.993184 | \n",
+ " 0.995217 | \n",
+ " 0.994591 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " ADA-SGD | \n",
+ " 0.998844 | \n",
+ " 0.998843 | \n",
+ " 0.998173 | \n",
+ " 0.995809 | \n",
+ " 0.997596 | \n",
+ " 0.997686 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " DOGE-SGD | \n",
+ " 0.997532 | \n",
+ " 0.996282 | \n",
+ " 0.996732 | \n",
+ " 0.995176 | \n",
+ " 0.996231 | \n",
+ " 0.994917 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " WTRX-SGD | \n",
+ " 0.993193 | \n",
+ " 0.520164 | \n",
+ " 0.985621 | \n",
+ " 0.979841 | \n",
+ " 0.986519 | \n",
+ " 0.981738 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " SOL-SGD | \n",
+ " 0.998861 | \n",
+ " 0.998861 | \n",
+ " 0.997650 | \n",
+ " 0.997153 | \n",
+ " 0.997514 | \n",
+ " 0.997196 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " TRX-SGD | \n",
+ " 0.994416 | \n",
+ " 0.970182 | \n",
+ " 0.981699 | \n",
+ " 0.985031 | \n",
+ " 0.984792 | \n",
+ " 0.980132 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " TON11419-SGD | \n",
+ " 0.987901 | \n",
+ " 0.986923 | \n",
+ " 0.980488 | \n",
+ " 0.955144 | \n",
+ " 0.981399 | \n",
+ " 0.974923 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " DAI-SGD | \n",
+ " 0.956892 | \n",
+ " 0.863366 | \n",
+ " 0.969210 | \n",
+ " 0.955764 | \n",
+ " 0.970992 | \n",
+ " 0.966129 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " DOT-SGD | \n",
+ " 0.997157 | \n",
+ " 0.997160 | \n",
+ " 0.996588 | \n",
+ " 0.993182 | \n",
+ " 0.996363 | \n",
+ " 0.995526 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " MATIC-SGD | \n",
+ " 0.998655 | \n",
+ " 0.998550 | \n",
+ " 0.996827 | \n",
+ " 0.993972 | \n",
+ " 0.997526 | \n",
+ " 0.996792 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " LTC-SGD | \n",
+ " 0.998378 | \n",
+ " 0.998378 | \n",
+ " 0.997971 | \n",
+ " 0.995632 | \n",
+ " 0.997830 | \n",
+ " 0.996950 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " WBTC-SGD | \n",
+ " 0.998118 | \n",
+ " 0.998118 | \n",
+ " 0.992431 | \n",
+ " 0.997462 | \n",
+ " 0.994908 | \n",
+ " 0.991558 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " SHIB-SGD | \n",
+ " 0.997543 | \n",
+ " 0.348902 | \n",
+ " 0.977479 | \n",
+ " 0.956806 | \n",
+ " 0.983012 | \n",
+ " -0.004916 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " BCH-SGD | \n",
+ " 0.998268 | \n",
+ " 0.998268 | \n",
+ " 0.995707 | \n",
+ " 0.992923 | \n",
+ " 0.995370 | \n",
+ " 0.994136 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " XLM-SGD | \n",
+ " 0.996184 | \n",
+ " 0.994903 | \n",
+ " 0.995776 | \n",
+ " 0.989450 | \n",
+ " 0.993943 | \n",
+ " 0.995530 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " LEO-SGD | \n",
+ " 0.998021 | \n",
+ " 0.997750 | \n",
+ " 0.991283 | \n",
+ " 0.989968 | \n",
+ " 0.994527 | \n",
+ " 0.995926 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " AVAX-SGD | \n",
+ " 0.997976 | \n",
+ " 0.997976 | \n",
+ " 0.995018 | \n",
+ " 0.990893 | \n",
+ " 0.995090 | \n",
+ " 0.994441 | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " LINK-SGD | \n",
+ " 0.998810 | \n",
+ " 0.998809 | \n",
+ " 0.997424 | \n",
+ " 0.995608 | \n",
+ " 0.997546 | \n",
+ " 0.996198 | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " TUSD-SGD | \n",
+ " 0.922381 | \n",
+ " 0.877465 | \n",
+ " 0.976368 | \n",
+ " 0.961560 | \n",
+ " 0.964749 | \n",
+ " 0.965890 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 14
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "#### Hence, Model training completed, and accuracy of all models on different dataset is stored in the CSV file.\n",
+ "\n",
+ "---"
+ ],
+ "metadata": {
+ "id": "p-cYQ12oXrx9"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## Let's now train the model on LSTM model"
+ ],
+ "metadata": {
+ "id": "83wIfUG7EHnr"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "from keras.models import Sequential\n",
+ "from keras.layers import Dense, LSTM\n",
+ "from sklearn.metrics import mean_squared_error, r2_score\n"
+ ],
+ "metadata": {
+ "id": "p9LRWqE6Usa1"
+ },
+ "execution_count": 15,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "#### Now, prepare the LSTM Neural Network"
+ ],
+ "metadata": {
+ "id": "fX4UZ8_5ES8i"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "def lstmNeuralNetwork(shape):\n",
+ " # LSTM neural network building\n",
+ " model = Sequential()\n",
+ " model.add(LSTM(128, return_sequences=True, input_shape=(shape, 1)))\n",
+ " model.add(LSTM(64, return_sequences=False))\n",
+ " model.add(Dense(25))\n",
+ " model.add(Dense(1))\n",
+ " model.summary()\n",
+ " return model\n"
+ ],
+ "metadata": {
+ "id": "M-u7Jw2lENff"
+ },
+ "execution_count": 16,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "#### Let's train the model and fit the dataset on the model"
+ ],
+ "metadata": {
+ "id": "TVSNsLTbV4dB"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "def lstmTrain(xtrain, ytrain, xtest, ytest, model, epochs=30, batchSize=1):\n",
+ " # Compile this model and fit the dataset on the model\n",
+ " model.compile(optimizer='adam', loss='mean_squared_error')\n",
+ " model.fit(xtrain, ytrain, batch_size=batchSize, epochs=epochs)\n",
+ "\n",
+ " predictions = model.predict(xtest)\n",
+ "\n",
+ " # Calculate Mean Squared Error\n",
+ " mse = mean_squared_error(ytest, predictions)\n",
+ "\n",
+ " # Calculate R2 Score\n",
+ " r2 = r2_score(ytest, predictions)\n",
+ "\n",
+ " return {'mse': mse, 'r2': r2}\n"
+ ],
+ "metadata": {
+ "id": "P380o3wLO3Ru"
+ },
+ "execution_count": 17,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "#### Iterate over all the datasets and fit the on the model and store the accuracy of the model on that corresponding dataset"
+ ],
+ "metadata": {
+ "id": "9oc_9ZNbWDgU"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "def lstmModelTrain(dataFrame):\n",
+ " # Create an empty DataFrame to store accuracy results\n",
+ " accuracyDF = pd.DataFrame(columns=['Dataset', 'MSE', 'R2'])\n",
+ "\n",
+ " # LSTM model building\n",
+ " model = lstmNeuralNetwork(4)\n",
+ "\n",
+ " # Iterate over only limited datasets\n",
+ " for i in dataFrame.index:\n",
+ " if i >= limit:\n",
+ " break\n",
+ "\n",
+ " # For a single dataset\n",
+ " fileName = dataFrame['Filename'][i]\n",
+ " data = pd.read_csv(os.path.join(filePath, fileName))\n",
+ "\n",
+ " # Split dataset for training and testing purpose\n",
+ " xtrain, xtest, ytrain, ytest = splitData(data)\n",
+ "\n",
+ " # Now, train the model and get the accuracy of all the models\n",
+ " accuracy = lstmTrain(xtrain, ytrain, xtest, ytest, model, 20)\n",
+ "\n",
+ " # Append the accuracy for the current dataset to the overall DataFrame\n",
+ " accuracyDF = accuracyDF.append({'Dataset': fileName[slice(-4)], 'MSE': accuracy['mse'], 'R2': accuracy['r2']}, ignore_index=True)\n",
+ "\n",
+ " return accuracyDF\n"
+ ],
+ "metadata": {
+ "id": "hUGuIEeiNh4l"
+ },
+ "execution_count": 18,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Calling the function to train the models on the limited dataset\n",
+ "\n",
+ "(because lack of resouces like GPU, RAM, etc.)"
+ ],
+ "metadata": {
+ "id": "Pa51Rcr_WU5k"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Call the trainModels function\n",
+ "accuracies = lstmModelTrain(df)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "gvQ9hnJ6SAGo",
+ "outputId": "c1cfb918-b5eb-4cb7-b069-d91993c22383"
+ },
+ "execution_count": 19,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Model: \"sequential\"\n",
+ "_________________________________________________________________\n",
+ " Layer (type) Output Shape Param # \n",
+ "=================================================================\n",
+ " lstm (LSTM) (None, 4, 128) 66560 \n",
+ " \n",
+ " lstm_1 (LSTM) (None, 64) 49408 \n",
+ " \n",
+ " dense (Dense) (None, 25) 1625 \n",
+ " \n",
+ " dense_1 (Dense) (None, 1) 26 \n",
+ " \n",
+ "=================================================================\n",
+ "Total params: 117619 (459.45 KB)\n",
+ "Trainable params: 117619 (459.45 KB)\n",
+ "Non-trainable params: 0 (0.00 Byte)\n",
+ "_________________________________________________________________\n",
+ "Epoch 1/20\n",
+ "2706/2706 [==============================] - 18s 5ms/step - loss: 745167104.0000\n",
+ "Epoch 2/20\n",
+ "2706/2706 [==============================] - 15s 6ms/step - loss: 517995776.0000\n",
+ "Epoch 3/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 472471264.0000\n",
+ "Epoch 4/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 469290688.0000\n",
+ "Epoch 5/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 469053408.0000\n",
+ "Epoch 6/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 469044256.0000\n",
+ "Epoch 7/20\n",
+ "2706/2706 [==============================] - 14s 5ms/step - loss: 468994272.0000\n",
+ "Epoch 8/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 469105632.0000\n",
+ "Epoch 9/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 468921408.0000\n",
+ "Epoch 10/20\n",
+ "2706/2706 [==============================] - 14s 5ms/step - loss: 469063584.0000\n",
+ "Epoch 11/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 469037664.0000\n",
+ "Epoch 12/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 469074912.0000\n",
+ "Epoch 13/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 469041920.0000\n",
+ "Epoch 14/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 469036256.0000\n",
+ "Epoch 15/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 469050752.0000\n",
+ "Epoch 16/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 469056032.0000\n",
+ "Epoch 17/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 469053760.0000\n",
+ "Epoch 18/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 469044544.0000\n",
+ "Epoch 19/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 469045504.0000\n",
+ "Epoch 20/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 469074176.0000\n",
+ "22/22 [==============================] - 1s 3ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "1787/1787 [==============================] - 12s 5ms/step - loss: 28121298.0000\n",
+ "Epoch 2/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 4415281.5000\n",
+ "Epoch 3/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 3828182.0000\n",
+ "Epoch 4/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 3561334.7500\n",
+ "Epoch 5/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 3261703.0000\n",
+ "Epoch 6/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 2911701.0000\n",
+ "Epoch 7/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 2608607.0000\n",
+ "Epoch 8/20\n",
+ "1787/1787 [==============================] - 10s 5ms/step - loss: 2425824.7500\n",
+ "Epoch 9/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 2340636.2500\n",
+ "Epoch 10/20\n",
+ "1787/1787 [==============================] - 11s 6ms/step - loss: 1795463.1250\n",
+ "Epoch 11/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 1198625.7500\n",
+ "Epoch 12/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 1016240.5625\n",
+ "Epoch 13/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 726112.7500\n",
+ "Epoch 14/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 564695.2500\n",
+ "Epoch 15/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 777175.8125\n",
+ "Epoch 16/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 499804.1562\n",
+ "Epoch 17/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 459943.9062\n",
+ "Epoch 18/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 336601.8125\n",
+ "Epoch 19/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 522445.0938\n",
+ "Epoch 20/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 232420.4531\n",
+ "14/14 [==============================] - 1s 3ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "1787/1787 [==============================] - 12s 5ms/step - loss: 12907430.0000\n",
+ "Epoch 2/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 252.9839\n",
+ "Epoch 3/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 32.2892\n",
+ "Epoch 4/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 33.7245\n",
+ "Epoch 5/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 36.0902\n",
+ "Epoch 6/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 43.2694\n",
+ "Epoch 7/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 35.8518\n",
+ "Epoch 8/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 27.0522\n",
+ "Epoch 9/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 21.3199\n",
+ "Epoch 10/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 14.8917\n",
+ "Epoch 11/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 12.3881\n",
+ "Epoch 12/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 16.6229\n",
+ "Epoch 13/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 3.2254\n",
+ "Epoch 14/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 1.9756\n",
+ "Epoch 15/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 0.7544\n",
+ "Epoch 16/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.4971\n",
+ "Epoch 17/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 1.2031\n",
+ "Epoch 18/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0143\n",
+ "Epoch 19/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0275\n",
+ "Epoch 20/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 0.1628\n",
+ "14/14 [==============================] - 1s 2ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "1787/1787 [==============================] - 12s 5ms/step - loss: 1644.2269\n",
+ "Epoch 2/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 1736.9709\n",
+ "Epoch 3/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 1750.3033\n",
+ "Epoch 4/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 1772.7800\n",
+ "Epoch 5/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 2956.1462\n",
+ "Epoch 6/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 762.8350\n",
+ "Epoch 7/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 2338.3623\n",
+ "Epoch 8/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 911.2818\n",
+ "Epoch 9/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 645.5426\n",
+ "Epoch 10/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 3467.8271\n",
+ "Epoch 11/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 805.9503\n",
+ "Epoch 12/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 1611.6888\n",
+ "Epoch 13/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 1314.8313\n",
+ "Epoch 14/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 997.9952\n",
+ "Epoch 15/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 721.5272\n",
+ "Epoch 16/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 2062.2024\n",
+ "Epoch 17/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 1444.7482\n",
+ "Epoch 18/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 900.2365\n",
+ "Epoch 19/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 1294.5601\n",
+ "Epoch 20/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 3334.3242\n",
+ "14/14 [==============================] - 1s 3ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "1520/1520 [==============================] - 10s 5ms/step - loss: 0.2619\n",
+ "Epoch 2/20\n",
+ "1520/1520 [==============================] - 7s 5ms/step - loss: 0.0880\n",
+ "Epoch 3/20\n",
+ "1520/1520 [==============================] - 8s 5ms/step - loss: 0.0346\n",
+ "Epoch 4/20\n",
+ "1520/1520 [==============================] - 7s 5ms/step - loss: 0.8757\n",
+ "Epoch 5/20\n",
+ "1520/1520 [==============================] - 7s 5ms/step - loss: 0.0010\n",
+ "Epoch 6/20\n",
+ "1520/1520 [==============================] - 7s 5ms/step - loss: 0.0013\n",
+ "Epoch 7/20\n",
+ "1520/1520 [==============================] - 7s 5ms/step - loss: 0.0295\n",
+ "Epoch 8/20\n",
+ "1520/1520 [==============================] - 7s 5ms/step - loss: 0.0022\n",
+ "Epoch 9/20\n",
+ "1520/1520 [==============================] - 8s 5ms/step - loss: 0.0039\n",
+ "Epoch 10/20\n",
+ "1520/1520 [==============================] - 7s 5ms/step - loss: 0.0108\n",
+ "Epoch 11/20\n",
+ "1520/1520 [==============================] - 7s 5ms/step - loss: 0.0091\n",
+ "Epoch 12/20\n",
+ "1520/1520 [==============================] - 9s 6ms/step - loss: 0.0052\n",
+ "Epoch 13/20\n",
+ "1520/1520 [==============================] - 9s 6ms/step - loss: 0.0055\n",
+ "Epoch 14/20\n",
+ "1520/1520 [==============================] - 7s 4ms/step - loss: 0.0053\n",
+ "Epoch 15/20\n",
+ "1520/1520 [==============================] - 8s 5ms/step - loss: 0.0060\n",
+ "Epoch 16/20\n",
+ "1520/1520 [==============================] - 7s 4ms/step - loss: 0.0068\n",
+ "Epoch 17/20\n",
+ "1520/1520 [==============================] - 8s 5ms/step - loss: 0.0064\n",
+ "Epoch 18/20\n",
+ "1520/1520 [==============================] - 7s 4ms/step - loss: 0.0062\n",
+ "Epoch 19/20\n",
+ "1520/1520 [==============================] - 8s 5ms/step - loss: 0.0065\n",
+ "Epoch 20/20\n",
+ "1520/1520 [==============================] - 7s 4ms/step - loss: 0.0056\n",
+ "12/12 [==============================] - 1s 3ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "1787/1787 [==============================] - 12s 4ms/step - loss: 0.1028\n",
+ "Epoch 2/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.1243\n",
+ "Epoch 3/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 0.0416\n",
+ "Epoch 4/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0652\n",
+ "Epoch 5/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0307\n",
+ "Epoch 6/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0405\n",
+ "Epoch 7/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0427\n",
+ "Epoch 8/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 0.0611\n",
+ "Epoch 9/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0539\n",
+ "Epoch 10/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 0.0270\n",
+ "Epoch 11/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0523\n",
+ "Epoch 12/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0416\n",
+ "Epoch 13/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 0.0605\n",
+ "Epoch 14/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0598\n",
+ "Epoch 15/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 0.0674\n",
+ "Epoch 16/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0397\n",
+ "Epoch 17/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0317\n",
+ "Epoch 18/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 0.0320\n",
+ "Epoch 19/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0451\n",
+ "Epoch 20/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 0.0649\n",
+ "14/14 [==============================] - 1s 3ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "875/875 [==============================] - 8s 5ms/step - loss: 1958158.3750\n",
+ "Epoch 2/20\n",
+ "875/875 [==============================] - 4s 5ms/step - loss: 1365010.3750\n",
+ "Epoch 3/20\n",
+ "875/875 [==============================] - 5s 5ms/step - loss: 1360005.1250\n",
+ "Epoch 4/20\n",
+ "875/875 [==============================] - 4s 5ms/step - loss: 1361292.3750\n",
+ "Epoch 5/20\n",
+ "875/875 [==============================] - 4s 4ms/step - loss: 1360881.7500\n",
+ "Epoch 6/20\n",
+ "875/875 [==============================] - 4s 5ms/step - loss: 1359680.5000\n",
+ "Epoch 7/20\n",
+ "875/875 [==============================] - 5s 5ms/step - loss: 1356693.2500\n",
+ "Epoch 8/20\n",
+ "875/875 [==============================] - 4s 4ms/step - loss: 1357700.2500\n",
+ "Epoch 9/20\n",
+ "875/875 [==============================] - 4s 4ms/step - loss: 1356368.2500\n",
+ "Epoch 10/20\n",
+ "875/875 [==============================] - 5s 5ms/step - loss: 1357665.1250\n",
+ "Epoch 11/20\n",
+ "875/875 [==============================] - 4s 5ms/step - loss: 1355672.8750\n",
+ "Epoch 12/20\n",
+ "875/875 [==============================] - 4s 4ms/step - loss: 1357419.5000\n",
+ "Epoch 13/20\n",
+ "875/875 [==============================] - 4s 5ms/step - loss: 1356008.0000\n",
+ "Epoch 14/20\n",
+ "875/875 [==============================] - 5s 5ms/step - loss: 1355431.8750\n",
+ "Epoch 15/20\n",
+ "875/875 [==============================] - 4s 4ms/step - loss: 1355876.3750\n",
+ "Epoch 16/20\n",
+ "875/875 [==============================] - 4s 4ms/step - loss: 1357984.3750\n",
+ "Epoch 17/20\n",
+ "875/875 [==============================] - 5s 6ms/step - loss: 1355780.3750\n",
+ "Epoch 18/20\n",
+ "875/875 [==============================] - 4s 5ms/step - loss: 1356507.7500\n",
+ "Epoch 19/20\n",
+ "875/875 [==============================] - 4s 5ms/step - loss: 1356533.5000\n",
+ "Epoch 20/20\n",
+ "875/875 [==============================] - 4s 5ms/step - loss: 1355791.3750\n",
+ "7/7 [==============================] - 1s 3ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "1787/1787 [==============================] - 12s 5ms/step - loss: 9676.1680\n",
+ "Epoch 2/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 455.9001\n",
+ "Epoch 3/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.4216\n",
+ "Epoch 4/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.5213\n",
+ "Epoch 5/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 21.7830\n",
+ "Epoch 6/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 0.0408\n",
+ "Epoch 7/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.1842\n",
+ "Epoch 8/20\n",
+ "1787/1787 [==============================] - 10s 5ms/step - loss: 253.1790\n",
+ "Epoch 9/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 0.6591\n",
+ "Epoch 10/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 2.9636\n",
+ "Epoch 11/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 0.0292\n",
+ "Epoch 12/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.6333\n",
+ "Epoch 13/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0074\n",
+ "Epoch 14/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 0.0110\n",
+ "Epoch 15/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0329\n",
+ "Epoch 16/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 0.0828\n",
+ "Epoch 17/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0217\n",
+ "Epoch 18/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.1064\n",
+ "Epoch 19/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 0.0452\n",
+ "Epoch 20/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0578\n",
+ "14/14 [==============================] - 1s 3ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "1787/1787 [==============================] - 12s 5ms/step - loss: 0.0415\n",
+ "Epoch 2/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 0.0014\n",
+ "Epoch 3/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0055\n",
+ "Epoch 4/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0076\n",
+ "Epoch 5/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 0.0036\n",
+ "Epoch 6/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0042\n",
+ "Epoch 7/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 0.0058\n",
+ "Epoch 8/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0066\n",
+ "Epoch 9/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0070\n",
+ "Epoch 10/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 0.0061\n",
+ "Epoch 11/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0061\n",
+ "Epoch 12/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 0.0095\n",
+ "Epoch 13/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0041\n",
+ "Epoch 14/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0058\n",
+ "Epoch 15/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0049\n",
+ "Epoch 16/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0046\n",
+ "Epoch 17/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 0.0052\n",
+ "Epoch 18/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0037\n",
+ "Epoch 19/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0038\n",
+ "Epoch 20/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0050\n",
+ "14/14 [==============================] - 1s 3ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "525/525 [==============================] - 6s 6ms/step - loss: 12681.9512\n",
+ "Epoch 2/20\n",
+ "525/525 [==============================] - 3s 5ms/step - loss: 6382.3164\n",
+ "Epoch 3/20\n",
+ "525/525 [==============================] - 2s 5ms/step - loss: 130.9532\n",
+ "Epoch 4/20\n",
+ "525/525 [==============================] - 2s 5ms/step - loss: 0.1048\n",
+ "Epoch 5/20\n",
+ "525/525 [==============================] - 2s 5ms/step - loss: 0.0558\n",
+ "Epoch 6/20\n",
+ "525/525 [==============================] - 3s 5ms/step - loss: 1.0279\n",
+ "Epoch 7/20\n",
+ "525/525 [==============================] - 3s 6ms/step - loss: 154.4657\n",
+ "Epoch 8/20\n",
+ "525/525 [==============================] - 2s 4ms/step - loss: 180.0177\n",
+ "Epoch 9/20\n",
+ "525/525 [==============================] - 2s 5ms/step - loss: 0.1756\n",
+ "Epoch 10/20\n",
+ "525/525 [==============================] - 2s 5ms/step - loss: 0.0213\n",
+ "Epoch 11/20\n",
+ "525/525 [==============================] - 2s 5ms/step - loss: 0.1201\n",
+ "Epoch 12/20\n",
+ "525/525 [==============================] - 3s 6ms/step - loss: 16.9270\n",
+ "Epoch 13/20\n",
+ "525/525 [==============================] - 3s 5ms/step - loss: 68.0034\n",
+ "Epoch 14/20\n",
+ "525/525 [==============================] - 2s 5ms/step - loss: 15.5969\n",
+ "Epoch 15/20\n",
+ "525/525 [==============================] - 2s 5ms/step - loss: 38.2134\n",
+ "Epoch 16/20\n",
+ "525/525 [==============================] - 2s 5ms/step - loss: 16.4367\n",
+ "Epoch 17/20\n",
+ "525/525 [==============================] - 3s 5ms/step - loss: 5.7491\n",
+ "Epoch 18/20\n",
+ "525/525 [==============================] - 3s 6ms/step - loss: 14.6192\n",
+ "Epoch 19/20\n",
+ "525/525 [==============================] - 3s 5ms/step - loss: 18.5513\n",
+ "Epoch 20/20\n",
+ "525/525 [==============================] - 2s 5ms/step - loss: 9.6940\n",
+ "5/5 [==============================] - 1s 3ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "1080/1080 [==============================] - 9s 6ms/step - loss: 2279.0322\n",
+ "Epoch 2/20\n",
+ "1080/1080 [==============================] - 5s 5ms/step - loss: 172.8917\n",
+ "Epoch 3/20\n",
+ "1080/1080 [==============================] - 5s 5ms/step - loss: 119.5325\n",
+ "Epoch 4/20\n",
+ "1080/1080 [==============================] - 6s 6ms/step - loss: 86.0607\n",
+ "Epoch 5/20\n",
+ "1080/1080 [==============================] - 5s 4ms/step - loss: 101.9860\n",
+ "Epoch 6/20\n",
+ "1080/1080 [==============================] - 5s 5ms/step - loss: 86.6312\n",
+ "Epoch 7/20\n",
+ "1080/1080 [==============================] - 6s 6ms/step - loss: 59.3291\n",
+ "Epoch 8/20\n",
+ "1080/1080 [==============================] - 5s 4ms/step - loss: 57.0641\n",
+ "Epoch 9/20\n",
+ "1080/1080 [==============================] - 5s 5ms/step - loss: 104.0968\n",
+ "Epoch 10/20\n",
+ "1080/1080 [==============================] - 6s 5ms/step - loss: 169.3685\n",
+ "Epoch 11/20\n",
+ "1080/1080 [==============================] - 5s 5ms/step - loss: 54.6372\n",
+ "Epoch 12/20\n",
+ "1080/1080 [==============================] - 6s 5ms/step - loss: 40.7266\n",
+ "Epoch 13/20\n",
+ "1080/1080 [==============================] - 5s 5ms/step - loss: 87.4302\n",
+ "Epoch 14/20\n",
+ "1080/1080 [==============================] - 5s 5ms/step - loss: 54.4349\n",
+ "Epoch 15/20\n",
+ "1080/1080 [==============================] - 6s 6ms/step - loss: 47.4644\n",
+ "Epoch 16/20\n",
+ "1080/1080 [==============================] - 5s 5ms/step - loss: 60.9636\n",
+ "Epoch 17/20\n",
+ "1080/1080 [==============================] - 5s 5ms/step - loss: 56.8926\n",
+ "Epoch 18/20\n",
+ "1080/1080 [==============================] - 6s 5ms/step - loss: 69.0652\n",
+ "Epoch 19/20\n",
+ "1080/1080 [==============================] - 5s 5ms/step - loss: 47.1356\n",
+ "Epoch 20/20\n",
+ "1080/1080 [==============================] - 6s 5ms/step - loss: 44.6408\n",
+ "9/9 [==============================] - 1s 4ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "1787/1787 [==============================] - 12s 5ms/step - loss: 0.0523\n",
+ "Epoch 2/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 22.1228\n",
+ "Epoch 3/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.6087\n",
+ "Epoch 4/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 0.0361\n",
+ "Epoch 5/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0261\n",
+ "Epoch 6/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 9.1933e-04\n",
+ "Epoch 7/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0132\n",
+ "Epoch 8/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 1.0421\n",
+ "Epoch 9/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 119.7811\n",
+ "Epoch 10/20\n",
+ "1787/1787 [==============================] - 10s 5ms/step - loss: 0.0010\n",
+ "Epoch 11/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 0.0674\n",
+ "Epoch 12/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.2460\n",
+ "Epoch 13/20\n",
+ "1787/1787 [==============================] - 10s 5ms/step - loss: 0.0016\n",
+ "Epoch 14/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 3.7577e-04\n",
+ "Epoch 15/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.2507\n",
+ "Epoch 16/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.6188\n",
+ "Epoch 17/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.4150\n",
+ "Epoch 18/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0700\n",
+ "Epoch 19/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 0.1270\n",
+ "Epoch 20/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0022\n",
+ "14/14 [==============================] - 1s 2ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "677/677 [==============================] - 6s 5ms/step - loss: 0.4461\n",
+ "Epoch 2/20\n",
+ "677/677 [==============================] - 4s 5ms/step - loss: 0.1615\n",
+ "Epoch 3/20\n",
+ "677/677 [==============================] - 4s 6ms/step - loss: 0.0852\n",
+ "Epoch 4/20\n",
+ "677/677 [==============================] - 3s 5ms/step - loss: 0.0368\n",
+ "Epoch 5/20\n",
+ "677/677 [==============================] - 3s 5ms/step - loss: 0.0652\n",
+ "Epoch 6/20\n",
+ "677/677 [==============================] - 3s 5ms/step - loss: 0.0548\n",
+ "Epoch 7/20\n",
+ "677/677 [==============================] - 4s 6ms/step - loss: 0.0483\n",
+ "Epoch 8/20\n",
+ "677/677 [==============================] - 3s 5ms/step - loss: 0.0793\n",
+ "Epoch 9/20\n",
+ "677/677 [==============================] - 3s 5ms/step - loss: 0.0539\n",
+ "Epoch 10/20\n",
+ "677/677 [==============================] - 3s 5ms/step - loss: 0.0433\n",
+ "Epoch 11/20\n",
+ "677/677 [==============================] - 4s 5ms/step - loss: 0.0509\n",
+ "Epoch 12/20\n",
+ "677/677 [==============================] - 4s 5ms/step - loss: 0.0442\n",
+ "Epoch 13/20\n",
+ "677/677 [==============================] - 3s 5ms/step - loss: 0.0910\n",
+ "Epoch 14/20\n",
+ "677/677 [==============================] - 3s 5ms/step - loss: 0.0459\n",
+ "Epoch 15/20\n",
+ "677/677 [==============================] - 3s 5ms/step - loss: 0.1896\n",
+ "Epoch 16/20\n",
+ "677/677 [==============================] - 4s 6ms/step - loss: 0.0706\n",
+ "Epoch 17/20\n",
+ "677/677 [==============================] - 3s 5ms/step - loss: 0.2524\n",
+ "Epoch 18/20\n",
+ "677/677 [==============================] - 3s 5ms/step - loss: 0.0338\n",
+ "Epoch 19/20\n",
+ "677/677 [==============================] - 3s 5ms/step - loss: 0.0630\n",
+ "Epoch 20/20\n",
+ "677/677 [==============================] - 4s 6ms/step - loss: 0.0282\n",
+ "6/6 [==============================] - 1s 4ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "1192/1192 [==============================] - 9s 5ms/step - loss: 0.1546\n",
+ "Epoch 2/20\n",
+ "1192/1192 [==============================] - 7s 6ms/step - loss: 0.0074\n",
+ "Epoch 3/20\n",
+ "1192/1192 [==============================] - 6s 5ms/step - loss: 0.0023\n",
+ "Epoch 4/20\n",
+ "1192/1192 [==============================] - 6s 5ms/step - loss: 0.0027\n",
+ "Epoch 5/20\n",
+ "1192/1192 [==============================] - 6s 5ms/step - loss: 0.0016\n",
+ "Epoch 6/20\n",
+ "1192/1192 [==============================] - 6s 5ms/step - loss: 0.0029\n",
+ "Epoch 7/20\n",
+ "1192/1192 [==============================] - 7s 6ms/step - loss: 0.0042\n",
+ "Epoch 8/20\n",
+ "1192/1192 [==============================] - 6s 5ms/step - loss: 0.0027\n",
+ "Epoch 9/20\n",
+ "1192/1192 [==============================] - 6s 5ms/step - loss: 0.0363\n",
+ "Epoch 10/20\n",
+ "1192/1192 [==============================] - 6s 5ms/step - loss: 0.0028\n",
+ "Epoch 11/20\n",
+ "1192/1192 [==============================] - 5s 5ms/step - loss: 0.0062\n",
+ "Epoch 12/20\n",
+ "1192/1192 [==============================] - 7s 6ms/step - loss: 0.0041\n",
+ "Epoch 13/20\n",
+ "1192/1192 [==============================] - 6s 5ms/step - loss: 0.0182\n",
+ "Epoch 14/20\n",
+ "1192/1192 [==============================] - 7s 5ms/step - loss: 0.0195\n",
+ "Epoch 15/20\n",
+ "1192/1192 [==============================] - 6s 5ms/step - loss: 0.0319\n",
+ "Epoch 16/20\n",
+ "1192/1192 [==============================] - 5s 5ms/step - loss: 0.0012\n",
+ "Epoch 17/20\n",
+ "1192/1192 [==============================] - 7s 6ms/step - loss: 0.0024\n",
+ "Epoch 18/20\n",
+ "1192/1192 [==============================] - 5s 5ms/step - loss: 0.0281\n",
+ "Epoch 19/20\n",
+ "1192/1192 [==============================] - 6s 5ms/step - loss: 0.0031\n",
+ "Epoch 20/20\n",
+ "1192/1192 [==============================] - 6s 5ms/step - loss: 0.0343\n",
+ "10/10 [==============================] - 1s 3ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "975/975 [==============================] - 8s 6ms/step - loss: 211.7144\n",
+ "Epoch 2/20\n",
+ "975/975 [==============================] - 5s 5ms/step - loss: 4.7379\n",
+ "Epoch 3/20\n",
+ "975/975 [==============================] - 4s 5ms/step - loss: 2.6904\n",
+ "Epoch 4/20\n",
+ "975/975 [==============================] - 5s 5ms/step - loss: 2.0289\n",
+ "Epoch 5/20\n",
+ "975/975 [==============================] - 5s 5ms/step - loss: 2.3495\n",
+ "Epoch 6/20\n",
+ "975/975 [==============================] - 4s 4ms/step - loss: 3.3149\n",
+ "Epoch 7/20\n",
+ "975/975 [==============================] - 5s 5ms/step - loss: 4.7495\n",
+ "Epoch 8/20\n",
+ "975/975 [==============================] - 5s 5ms/step - loss: 3.8194\n",
+ "Epoch 9/20\n",
+ "975/975 [==============================] - 4s 5ms/step - loss: 2.4366\n",
+ "Epoch 10/20\n",
+ "975/975 [==============================] - 5s 5ms/step - loss: 2.0540\n",
+ "Epoch 11/20\n",
+ "975/975 [==============================] - 5s 5ms/step - loss: 3.1854\n",
+ "Epoch 12/20\n",
+ "975/975 [==============================] - 4s 5ms/step - loss: 7.0814\n",
+ "Epoch 13/20\n",
+ "975/975 [==============================] - 5s 5ms/step - loss: 16.5649\n",
+ "Epoch 14/20\n",
+ "975/975 [==============================] - 5s 5ms/step - loss: 3.3780\n",
+ "Epoch 15/20\n",
+ "975/975 [==============================] - 4s 5ms/step - loss: 13.1634\n",
+ "Epoch 16/20\n",
+ "975/975 [==============================] - 5s 5ms/step - loss: 1.4604\n",
+ "Epoch 17/20\n",
+ "975/975 [==============================] - 5s 5ms/step - loss: 2.7536\n",
+ "Epoch 18/20\n",
+ "975/975 [==============================] - 4s 5ms/step - loss: 4.0950\n",
+ "Epoch 19/20\n",
+ "975/975 [==============================] - 5s 5ms/step - loss: 2.5791\n",
+ "Epoch 20/20\n",
+ "975/975 [==============================] - 5s 5ms/step - loss: 5.8590\n",
+ "8/8 [==============================] - 1s 3ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "1359/1359 [==============================] - 11s 5ms/step - loss: 2.8934\n",
+ "Epoch 2/20\n",
+ "1359/1359 [==============================] - 7s 5ms/step - loss: 0.0831\n",
+ "Epoch 3/20\n",
+ "1359/1359 [==============================] - 7s 5ms/step - loss: 0.3315\n",
+ "Epoch 4/20\n",
+ "1359/1359 [==============================] - 6s 5ms/step - loss: 0.2367\n",
+ "Epoch 5/20\n",
+ "1359/1359 [==============================] - 9s 7ms/step - loss: 0.0630\n",
+ "Epoch 6/20\n",
+ "1359/1359 [==============================] - 8s 6ms/step - loss: 0.0648\n",
+ "Epoch 7/20\n",
+ "1359/1359 [==============================] - 7s 5ms/step - loss: 0.5722\n",
+ "Epoch 8/20\n",
+ "1359/1359 [==============================] - 6s 5ms/step - loss: 0.0229\n",
+ "Epoch 9/20\n",
+ "1359/1359 [==============================] - 7s 5ms/step - loss: 0.0169\n",
+ "Epoch 10/20\n",
+ "1359/1359 [==============================] - 6s 5ms/step - loss: 0.2041\n",
+ "Epoch 11/20\n",
+ "1359/1359 [==============================] - 7s 5ms/step - loss: 0.0909\n",
+ "Epoch 12/20\n",
+ "1359/1359 [==============================] - 6s 5ms/step - loss: 0.0209\n",
+ "Epoch 13/20\n",
+ "1359/1359 [==============================] - 7s 5ms/step - loss: 0.0310\n",
+ "Epoch 14/20\n",
+ "1359/1359 [==============================] - 6s 5ms/step - loss: 0.0495\n",
+ "Epoch 15/20\n",
+ "1359/1359 [==============================] - 7s 5ms/step - loss: 0.0278\n",
+ "Epoch 16/20\n",
+ "1359/1359 [==============================] - 7s 5ms/step - loss: 0.0662\n",
+ "Epoch 17/20\n",
+ "1359/1359 [==============================] - 6s 5ms/step - loss: 0.0208\n",
+ "Epoch 18/20\n",
+ "1359/1359 [==============================] - 7s 5ms/step - loss: 0.0355\n",
+ "Epoch 19/20\n",
+ "1359/1359 [==============================] - 6s 5ms/step - loss: 0.0216\n",
+ "Epoch 20/20\n",
+ "1359/1359 [==============================] - 7s 5ms/step - loss: 0.0233\n",
+ "11/11 [==============================] - 1s 3ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "2706/2706 [==============================] - 17s 5ms/step - loss: 417.2587\n",
+ "Epoch 2/20\n",
+ "2706/2706 [==============================] - 14s 5ms/step - loss: 239.4198\n",
+ "Epoch 3/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 155.2303\n",
+ "Epoch 4/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 94.1213\n",
+ "Epoch 5/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 146.0436\n",
+ "Epoch 6/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 102.2642\n",
+ "Epoch 7/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 92.9752\n",
+ "Epoch 8/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 123.6125\n",
+ "Epoch 9/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 114.3514\n",
+ "Epoch 10/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 141.0581\n",
+ "Epoch 11/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 80.9123\n",
+ "Epoch 12/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 95.0775\n",
+ "Epoch 13/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 124.9699\n",
+ "Epoch 14/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 94.1694\n",
+ "Epoch 15/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 97.9396\n",
+ "Epoch 16/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 104.2824\n",
+ "Epoch 17/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 98.4615\n",
+ "Epoch 18/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 70.3739\n",
+ "Epoch 19/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 79.2161\n",
+ "Epoch 20/20\n",
+ "2706/2706 [==============================] - 13s 5ms/step - loss: 89.2208\n",
+ "22/22 [==============================] - 1s 2ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "1429/1429 [==============================] - 11s 5ms/step - loss: 1259658368.0000\n",
+ "Epoch 2/20\n",
+ "1429/1429 [==============================] - 6s 4ms/step - loss: 488986528.0000\n",
+ "Epoch 3/20\n",
+ "1429/1429 [==============================] - 8s 5ms/step - loss: 484934304.0000\n",
+ "Epoch 4/20\n",
+ "1429/1429 [==============================] - 6s 4ms/step - loss: 478468736.0000\n",
+ "Epoch 5/20\n",
+ "1429/1429 [==============================] - 7s 5ms/step - loss: 489869088.0000\n",
+ "Epoch 6/20\n",
+ "1429/1429 [==============================] - 6s 4ms/step - loss: 489364320.0000\n",
+ "Epoch 7/20\n",
+ "1429/1429 [==============================] - 7s 5ms/step - loss: 472512128.0000\n",
+ "Epoch 8/20\n",
+ "1429/1429 [==============================] - 7s 5ms/step - loss: 470370368.0000\n",
+ "Epoch 9/20\n",
+ "1429/1429 [==============================] - 7s 5ms/step - loss: 466969088.0000\n",
+ "Epoch 10/20\n",
+ "1429/1429 [==============================] - 7s 5ms/step - loss: 466593984.0000\n",
+ "Epoch 11/20\n",
+ "1429/1429 [==============================] - 7s 5ms/step - loss: 469077760.0000\n",
+ "Epoch 12/20\n",
+ "1429/1429 [==============================] - 7s 5ms/step - loss: 467190016.0000\n",
+ "Epoch 13/20\n",
+ "1429/1429 [==============================] - 7s 5ms/step - loss: 466956832.0000\n",
+ "Epoch 14/20\n",
+ "1429/1429 [==============================] - 7s 5ms/step - loss: 466532864.0000\n",
+ "Epoch 15/20\n",
+ "1429/1429 [==============================] - 6s 4ms/step - loss: 466411328.0000\n",
+ "Epoch 16/20\n",
+ "1429/1429 [==============================] - 7s 5ms/step - loss: 466750112.0000\n",
+ "Epoch 17/20\n",
+ "1429/1429 [==============================] - 6s 4ms/step - loss: 466557952.0000\n",
+ "Epoch 18/20\n",
+ "1429/1429 [==============================] - 8s 5ms/step - loss: 466535360.0000\n",
+ "Epoch 19/20\n",
+ "1429/1429 [==============================] - 6s 4ms/step - loss: 466657536.0000\n",
+ "Epoch 20/20\n",
+ "1429/1429 [==============================] - 8s 5ms/step - loss: 466554912.0000\n",
+ "12/12 [==============================] - 1s 3ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "957/957 [==============================] - 7s 4ms/step - loss: 621084.6250\n",
+ "Epoch 2/20\n",
+ "957/957 [==============================] - 6s 6ms/step - loss: 27236.0508\n",
+ "Epoch 3/20\n",
+ "957/957 [==============================] - 4s 4ms/step - loss: 4219.5806\n",
+ "Epoch 4/20\n",
+ "957/957 [==============================] - 4s 5ms/step - loss: 1857.9496\n",
+ "Epoch 5/20\n",
+ "957/957 [==============================] - 5s 5ms/step - loss: 1858.0149\n",
+ "Epoch 6/20\n",
+ "957/957 [==============================] - 4s 5ms/step - loss: 778.3851\n",
+ "Epoch 7/20\n",
+ "957/957 [==============================] - 4s 4ms/step - loss: 236.4230\n",
+ "Epoch 8/20\n",
+ "957/957 [==============================] - 5s 5ms/step - loss: 3138.8855\n",
+ "Epoch 9/20\n",
+ "957/957 [==============================] - 5s 5ms/step - loss: 1146.1658\n",
+ "Epoch 10/20\n",
+ "957/957 [==============================] - 4s 5ms/step - loss: 499.8585\n",
+ "Epoch 11/20\n",
+ "957/957 [==============================] - 5s 5ms/step - loss: 195.5746\n",
+ "Epoch 12/20\n",
+ "957/957 [==============================] - 6s 6ms/step - loss: 1514.0706\n",
+ "Epoch 13/20\n",
+ "957/957 [==============================] - 4s 5ms/step - loss: 547.1377\n",
+ "Epoch 14/20\n",
+ "957/957 [==============================] - 5s 5ms/step - loss: 1453.9470\n",
+ "Epoch 15/20\n",
+ "957/957 [==============================] - 5s 6ms/step - loss: 2273.0786\n",
+ "Epoch 16/20\n",
+ "957/957 [==============================] - 4s 5ms/step - loss: 293.5168\n",
+ "Epoch 17/20\n",
+ "957/957 [==============================] - 5s 5ms/step - loss: 494.5534\n",
+ "Epoch 18/20\n",
+ "957/957 [==============================] - 5s 6ms/step - loss: 541.9650\n",
+ "Epoch 19/20\n",
+ "957/957 [==============================] - 4s 5ms/step - loss: 307.9024\n",
+ "Epoch 20/20\n",
+ "957/957 [==============================] - 4s 5ms/step - loss: 543.7620\n",
+ "8/8 [==============================] - 1s 3ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "1787/1787 [==============================] - 12s 5ms/step - loss: 4335958.5000\n",
+ "Epoch 2/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 73788.4609\n",
+ "Epoch 3/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 64318.1914\n",
+ "Epoch 4/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 86597.0781\n",
+ "Epoch 5/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 62073.1602\n",
+ "Epoch 6/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 45211.1484\n",
+ "Epoch 7/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 17098.7031\n",
+ "Epoch 8/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 37722.8945\n",
+ "Epoch 9/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 29009.3945\n",
+ "Epoch 10/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 34464.8086\n",
+ "Epoch 11/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 24827.5801\n",
+ "Epoch 12/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 43283.7461\n",
+ "Epoch 13/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 31423.5820\n",
+ "Epoch 14/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 23738.5898\n",
+ "Epoch 15/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 14324.9287\n",
+ "Epoch 16/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 30600.6836\n",
+ "Epoch 17/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 22841.7656\n",
+ "Epoch 18/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 15109.8311\n",
+ "Epoch 19/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 23573.4902\n",
+ "Epoch 20/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 27365.9414\n",
+ "14/14 [==============================] - 1s 3ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "1787/1787 [==============================] - 12s 5ms/step - loss: 468.7559\n",
+ "Epoch 2/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 295.0444\n",
+ "Epoch 3/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 133.5947\n",
+ "Epoch 4/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0891\n",
+ "Epoch 5/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 0.0282\n",
+ "Epoch 6/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0703\n",
+ "Epoch 7/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0520\n",
+ "Epoch 8/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 219.7085\n",
+ "Epoch 9/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.1900\n",
+ "Epoch 10/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 228.5038\n",
+ "Epoch 11/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 9.4334\n",
+ "Epoch 12/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0191\n",
+ "Epoch 13/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 83.8394\n",
+ "Epoch 14/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 1.8987\n",
+ "Epoch 15/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 1.4519\n",
+ "Epoch 16/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 15.8433\n",
+ "Epoch 17/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0036\n",
+ "Epoch 18/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.0051\n",
+ "Epoch 19/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 0.2769\n",
+ "Epoch 20/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 0.1029\n",
+ "14/14 [==============================] - 1s 2ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "1340/1340 [==============================] - 11s 5ms/step - loss: 4.7117\n",
+ "Epoch 2/20\n",
+ "1340/1340 [==============================] - 6s 5ms/step - loss: 2.3157\n",
+ "Epoch 3/20\n",
+ "1340/1340 [==============================] - 7s 5ms/step - loss: 1.7574\n",
+ "Epoch 4/20\n",
+ "1340/1340 [==============================] - 6s 5ms/step - loss: 0.8496\n",
+ "Epoch 5/20\n",
+ "1340/1340 [==============================] - 7s 5ms/step - loss: 1.6642\n",
+ "Epoch 6/20\n",
+ "1340/1340 [==============================] - 6s 4ms/step - loss: 0.0584\n",
+ "Epoch 7/20\n",
+ "1340/1340 [==============================] - 7s 5ms/step - loss: 0.0853\n",
+ "Epoch 8/20\n",
+ "1340/1340 [==============================] - 6s 4ms/step - loss: 2.1111\n",
+ "Epoch 9/20\n",
+ "1340/1340 [==============================] - 7s 5ms/step - loss: 11.0311\n",
+ "Epoch 10/20\n",
+ "1340/1340 [==============================] - 6s 5ms/step - loss: 0.6943\n",
+ "Epoch 11/20\n",
+ "1340/1340 [==============================] - 6s 5ms/step - loss: 0.0340\n",
+ "Epoch 12/20\n",
+ "1340/1340 [==============================] - 7s 5ms/step - loss: 0.0400\n",
+ "Epoch 13/20\n",
+ "1340/1340 [==============================] - 6s 5ms/step - loss: 0.0744\n",
+ "Epoch 14/20\n",
+ "1340/1340 [==============================] - 7s 5ms/step - loss: 0.1006\n",
+ "Epoch 15/20\n",
+ "1340/1340 [==============================] - 6s 5ms/step - loss: 0.0848\n",
+ "Epoch 16/20\n",
+ "1340/1340 [==============================] - 7s 5ms/step - loss: 0.1341\n",
+ "Epoch 17/20\n",
+ "1340/1340 [==============================] - 6s 4ms/step - loss: 0.1547\n",
+ "Epoch 18/20\n",
+ "1340/1340 [==============================] - 7s 5ms/step - loss: 0.2311\n",
+ "Epoch 19/20\n",
+ "1340/1340 [==============================] - 6s 5ms/step - loss: 0.0985\n",
+ "Epoch 20/20\n",
+ "1340/1340 [==============================] - 6s 5ms/step - loss: 0.1186\n",
+ "11/11 [==============================] - 1s 3ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "950/950 [==============================] - 8s 4ms/step - loss: 3343.2886\n",
+ "Epoch 2/20\n",
+ "950/950 [==============================] - 4s 5ms/step - loss: 576.7405\n",
+ "Epoch 3/20\n",
+ "950/950 [==============================] - 5s 6ms/step - loss: 85.2426\n",
+ "Epoch 4/20\n",
+ "950/950 [==============================] - 4s 4ms/step - loss: 433.2572\n",
+ "Epoch 5/20\n",
+ "950/950 [==============================] - 4s 4ms/step - loss: 142.9957\n",
+ "Epoch 6/20\n",
+ "950/950 [==============================] - 5s 6ms/step - loss: 106.3037\n",
+ "Epoch 7/20\n",
+ "950/950 [==============================] - 4s 4ms/step - loss: 100.2846\n",
+ "Epoch 8/20\n",
+ "950/950 [==============================] - 4s 4ms/step - loss: 132.8107\n",
+ "Epoch 9/20\n",
+ "950/950 [==============================] - 5s 6ms/step - loss: 114.6796\n",
+ "Epoch 10/20\n",
+ "950/950 [==============================] - 4s 5ms/step - loss: 50.9183\n",
+ "Epoch 11/20\n",
+ "950/950 [==============================] - 4s 4ms/step - loss: 206.7650\n",
+ "Epoch 12/20\n",
+ "950/950 [==============================] - 5s 5ms/step - loss: 226.7179\n",
+ "Epoch 13/20\n",
+ "950/950 [==============================] - 5s 5ms/step - loss: 32.8381\n",
+ "Epoch 14/20\n",
+ "950/950 [==============================] - 4s 4ms/step - loss: 153.9625\n",
+ "Epoch 15/20\n",
+ "950/950 [==============================] - 5s 5ms/step - loss: 46.5100\n",
+ "Epoch 16/20\n",
+ "950/950 [==============================] - 5s 5ms/step - loss: 28.1083\n",
+ "Epoch 17/20\n",
+ "950/950 [==============================] - 4s 4ms/step - loss: 69.4302\n",
+ "Epoch 18/20\n",
+ "950/950 [==============================] - 5s 5ms/step - loss: 73.0361\n",
+ "Epoch 19/20\n",
+ "950/950 [==============================] - 5s 5ms/step - loss: 241.8242\n",
+ "Epoch 20/20\n",
+ "950/950 [==============================] - 4s 4ms/step - loss: 37.8984\n",
+ "8/8 [==============================] - 1s 3ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "1787/1787 [==============================] - 12s 5ms/step - loss: 5.2036\n",
+ "Epoch 2/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 3.2617\n",
+ "Epoch 3/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 3.7946\n",
+ "Epoch 4/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 3.3587\n",
+ "Epoch 5/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 2.7498\n",
+ "Epoch 6/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 2.9537\n",
+ "Epoch 7/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 3.8335\n",
+ "Epoch 8/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 2.6072\n",
+ "Epoch 9/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 3.8192\n",
+ "Epoch 10/20\n",
+ "1787/1787 [==============================] - 11s 6ms/step - loss: 3.3862\n",
+ "Epoch 11/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 3.0701\n",
+ "Epoch 12/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 6.7764\n",
+ "Epoch 13/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 2.9057\n",
+ "Epoch 14/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 3.1872\n",
+ "Epoch 15/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 2.4443\n",
+ "Epoch 16/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 2.9291\n",
+ "Epoch 17/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 2.5423\n",
+ "Epoch 18/20\n",
+ "1787/1787 [==============================] - 8s 5ms/step - loss: 2.9393\n",
+ "Epoch 19/20\n",
+ "1787/1787 [==============================] - 9s 5ms/step - loss: 2.2423\n",
+ "Epoch 20/20\n",
+ "1787/1787 [==============================] - 8s 4ms/step - loss: 2.7458\n",
+ "14/14 [==============================] - 2s 4ms/step\n",
+ "Epoch 1/20\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "1693/1693 [==============================] - 12s 4ms/step - loss: 0.0056\n",
+ "Epoch 2/20\n",
+ "1693/1693 [==============================] - 9s 5ms/step - loss: 0.0025\n",
+ "Epoch 3/20\n",
+ "1693/1693 [==============================] - 8s 5ms/step - loss: 0.0027\n",
+ "Epoch 4/20\n",
+ "1693/1693 [==============================] - 9s 5ms/step - loss: 0.0031\n",
+ "Epoch 5/20\n",
+ "1693/1693 [==============================] - 8s 5ms/step - loss: 0.0026\n",
+ "Epoch 6/20\n",
+ "1693/1693 [==============================] - 8s 5ms/step - loss: 0.0027\n",
+ "Epoch 7/20\n",
+ "1693/1693 [==============================] - 9s 5ms/step - loss: 0.0027\n",
+ "Epoch 8/20\n",
+ "1693/1693 [==============================] - 8s 4ms/step - loss: 0.0021\n",
+ "Epoch 9/20\n",
+ "1693/1693 [==============================] - 9s 5ms/step - loss: 0.0022\n",
+ "Epoch 10/20\n",
+ "1693/1693 [==============================] - 8s 5ms/step - loss: 0.0027\n",
+ "Epoch 11/20\n",
+ "1693/1693 [==============================] - 9s 5ms/step - loss: 0.0019\n",
+ "Epoch 12/20\n",
+ "1693/1693 [==============================] - 8s 5ms/step - loss: 0.0027\n",
+ "Epoch 13/20\n",
+ "1693/1693 [==============================] - 8s 5ms/step - loss: 0.0021\n",
+ "Epoch 14/20\n",
+ "1693/1693 [==============================] - 9s 5ms/step - loss: 0.0029\n",
+ "Epoch 15/20\n",
+ "1693/1693 [==============================] - 8s 5ms/step - loss: 0.0022\n",
+ "Epoch 16/20\n",
+ "1693/1693 [==============================] - 9s 5ms/step - loss: 0.0024\n",
+ "Epoch 17/20\n",
+ "1693/1693 [==============================] - 8s 4ms/step - loss: 0.0023\n",
+ "Epoch 18/20\n",
+ "1693/1693 [==============================] - 9s 5ms/step - loss: 0.0022\n",
+ "Epoch 19/20\n",
+ "1693/1693 [==============================] - 8s 5ms/step - loss: 0.0027\n",
+ "Epoch 20/20\n",
+ "1693/1693 [==============================] - 9s 5ms/step - loss: 0.0025\n",
+ "14/14 [==============================] - 1s 5ms/step\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ ":24: FutureWarning:\n",
+ "\n",
+ "The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
+ "\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Save accuracies of the whole training results into a single csv file named `LSTM_results.csv`"
+ ],
+ "metadata": {
+ "id": "rN8D2IV_WmMb"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "accuracies.to_csv('LSTM_results.csv', index=False)"
+ ],
+ "metadata": {
+ "id": "GgY2tGPNWmMb"
+ },
+ "execution_count": 21,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Let us see the saved dataset `LSTM_results.csv`"
+ ],
+ "metadata": {
+ "id": "C5iShjPlWmMc"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "resultsData = pd.read_csv('LSTM_results.csv')\n",
+ "print(\"Accuracies of Different models on different datasets!\")\n",
+ "resultsData"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 850
+ },
+ "outputId": "5acc8267-2767-407b-f0c5-9b420f83e473",
+ "id": "X5KVxY1HWmMc"
+ },
+ "execution_count": 22,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Accuracies of Different models on different datasets!\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Dataset MSE R2\n",
+ "0 BTC-SGD 4.874616e+08 -2.967174e-03\n",
+ "1 ETH-SGD 4.178541e+05 8.166412e-01\n",
+ "2 USDT-SGD 9.260454e-03 -1.327946e+01\n",
+ "3 BNB-SGD 1.206636e+03 9.780038e-01\n",
+ "4 USDC-SGD 3.359622e-03 -3.264993e+00\n",
+ "5 XRP-SGD 9.766995e-03 9.486673e-01\n",
+ "6 STETH-SGD 1.526732e+06 -1.275546e-04\n",
+ "7 ADA-SGD 1.603251e-02 9.681617e-01\n",
+ "8 DOGE-SGD 1.651918e-04 9.867902e-01\n",
+ "9 WTRX-SGD 4.497436e+00 -1.339005e+04\n",
+ "10 SOL-SGD 3.572016e+01 9.941831e-01\n",
+ "11 TRX-SGD 8.185882e-05 9.484200e-01\n",
+ "12 TON11419-SGD 2.037028e-01 7.976267e-01\n",
+ "13 DAI-SGD 3.348528e-03 -2.914893e+00\n",
+ "14 DOT-SGD 1.914015e+00 9.930964e-01\n",
+ "15 MATIC-SGD 1.430557e-02 9.805211e-01\n",
+ "16 LTC-SGD 3.159578e+01 9.956645e-01\n",
+ "17 WBTC-SGD 4.120300e+08 -5.060852e-03\n",
+ "18 SHIB-SGD 5.596118e+01 -1.915391e+11\n",
+ "19 BCH-SGD 8.338073e+03 9.750366e-01\n",
+ "20 XLM-SGD 9.369997e-04 9.683078e-01\n",
+ "21 LEO-SGD 6.229320e-02 9.858775e-01\n",
+ "22 AVAX-SGD 8.377987e+00 9.945632e-01\n",
+ "23 LINK-SGD 9.121696e-01 9.942063e-01\n",
+ "24 TUSD-SGD 9.360150e-03 -1.270343e+01"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Dataset | \n",
+ " MSE | \n",
+ " R2 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " BTC-SGD | \n",
+ " 4.874616e+08 | \n",
+ " -2.967174e-03 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " ETH-SGD | \n",
+ " 4.178541e+05 | \n",
+ " 8.166412e-01 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " USDT-SGD | \n",
+ " 9.260454e-03 | \n",
+ " -1.327946e+01 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " BNB-SGD | \n",
+ " 1.206636e+03 | \n",
+ " 9.780038e-01 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " USDC-SGD | \n",
+ " 3.359622e-03 | \n",
+ " -3.264993e+00 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " XRP-SGD | \n",
+ " 9.766995e-03 | \n",
+ " 9.486673e-01 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " STETH-SGD | \n",
+ " 1.526732e+06 | \n",
+ " -1.275546e-04 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " ADA-SGD | \n",
+ " 1.603251e-02 | \n",
+ " 9.681617e-01 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " DOGE-SGD | \n",
+ " 1.651918e-04 | \n",
+ " 9.867902e-01 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " WTRX-SGD | \n",
+ " 4.497436e+00 | \n",
+ " -1.339005e+04 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " SOL-SGD | \n",
+ " 3.572016e+01 | \n",
+ " 9.941831e-01 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " TRX-SGD | \n",
+ " 8.185882e-05 | \n",
+ " 9.484200e-01 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " TON11419-SGD | \n",
+ " 2.037028e-01 | \n",
+ " 7.976267e-01 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " DAI-SGD | \n",
+ " 3.348528e-03 | \n",
+ " -2.914893e+00 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " DOT-SGD | \n",
+ " 1.914015e+00 | \n",
+ " 9.930964e-01 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " MATIC-SGD | \n",
+ " 1.430557e-02 | \n",
+ " 9.805211e-01 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " LTC-SGD | \n",
+ " 3.159578e+01 | \n",
+ " 9.956645e-01 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " WBTC-SGD | \n",
+ " 4.120300e+08 | \n",
+ " -5.060852e-03 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " SHIB-SGD | \n",
+ " 5.596118e+01 | \n",
+ " -1.915391e+11 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " BCH-SGD | \n",
+ " 8.338073e+03 | \n",
+ " 9.750366e-01 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " XLM-SGD | \n",
+ " 9.369997e-04 | \n",
+ " 9.683078e-01 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " LEO-SGD | \n",
+ " 6.229320e-02 | \n",
+ " 9.858775e-01 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " AVAX-SGD | \n",
+ " 8.377987e+00 | \n",
+ " 9.945632e-01 | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " LINK-SGD | \n",
+ " 9.121696e-01 | \n",
+ " 9.942063e-01 | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " TUSD-SGD | \n",
+ " 9.360150e-03 | \n",
+ " -1.270343e+01 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 22
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "#### Model Building and LSTM Analysis Completed!"
+ ],
+ "metadata": {
+ "id": "GBAWZjw97eQH"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "---"
+ ],
+ "metadata": {
+ "id": "V86M4UyLQ_9R"
+ }
+ }
+ ]
+}
\ No newline at end of file
diff --git a/Singaporean Cryptocurrency Analysis/requirements.txt b/Singaporean Cryptocurrency Analysis/requirements.txt
new file mode 100644
index 000000000..7e7c38be0
--- /dev/null
+++ b/Singaporean Cryptocurrency Analysis/requirements.txt
@@ -0,0 +1,8 @@
+numpy==1.19.2
+pandas==1.4.3
+xgboost~=1.5.2
+scikit-learn~=1.0.2
+plotly==5.16.1
+plotly-express==0.4.1
+tensorflow==2.4.1
+keras==2.4.0