forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrtmdet_x_p6_4xb8-300e_coco.py
132 lines (122 loc) · 4.06 KB
/
rtmdet_x_p6_4xb8-300e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
_base_ = './rtmdet_x_8xb32-300e_coco.py'
model = dict(
backbone=dict(arch='P6', out_indices=(2, 3, 4, 5)),
neck=dict(in_channels=[320, 640, 960, 1280]),
bbox_head=dict(
anchor_generator=dict(
type='MlvlPointGenerator', offset=0, strides=[8, 16, 32, 64])))
train_pipeline = [
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='CachedMosaic', img_scale=(1280, 1280), pad_val=114.0),
dict(
type='RandomResize',
scale=(2560, 2560),
ratio_range=(0.1, 2.0),
keep_ratio=True),
dict(type='RandomCrop', crop_size=(1280, 1280)),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', prob=0.5),
dict(type='Pad', size=(1280, 1280), pad_val=dict(img=(114, 114, 114))),
dict(
type='CachedMixUp',
img_scale=(1280, 1280),
ratio_range=(1.0, 1.0),
max_cached_images=20,
pad_val=(114, 114, 114)),
dict(type='PackDetInputs')
]
train_pipeline_stage2 = [
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='RandomResize',
scale=(1280, 1280),
ratio_range=(0.1, 2.0),
keep_ratio=True),
dict(type='RandomCrop', crop_size=(1280, 1280)),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', prob=0.5),
dict(type='Pad', size=(1280, 1280), pad_val=dict(img=(114, 114, 114))),
dict(type='PackDetInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
dict(type='Resize', scale=(1280, 1280), keep_ratio=True),
dict(type='Pad', size=(1280, 1280), pad_val=dict(img=(114, 114, 114))),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
train_dataloader = dict(
batch_size=8, num_workers=20, dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(
batch_size=5, num_workers=20, dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader
max_epochs = 300
stage2_num_epochs = 20
base_lr = 0.004 * 32 / 256
optim_wrapper = dict(optimizer=dict(lr=base_lr))
param_scheduler = [
dict(
type='LinearLR',
start_factor=1.0e-5,
by_epoch=False,
begin=0,
end=1000),
dict(
# use cosine lr from 150 to 300 epoch
type='CosineAnnealingLR',
eta_min=base_lr * 0.05,
begin=max_epochs // 2,
end=max_epochs,
T_max=max_epochs // 2,
by_epoch=True,
convert_to_iter_based=True),
]
custom_hooks = [
dict(
type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0002,
update_buffers=True,
priority=49),
dict(
type='PipelineSwitchHook',
switch_epoch=max_epochs - stage2_num_epochs,
switch_pipeline=train_pipeline_stage2)
]
img_scales = [(1280, 1280), (640, 640), (1920, 1920)]
tta_pipeline = [
dict(type='LoadImageFromFile', backend_args=None),
dict(
type='TestTimeAug',
transforms=[
[
dict(type='Resize', scale=s, keep_ratio=True)
for s in img_scales
],
[
# ``RandomFlip`` must be placed before ``Pad``, otherwise
# bounding box coordinates after flipping cannot be
# recovered correctly.
dict(type='RandomFlip', prob=1.),
dict(type='RandomFlip', prob=0.)
],
[
dict(
type='Pad',
size=(1920, 1920),
pad_val=dict(img=(114, 114, 114))),
],
[dict(type='LoadAnnotations', with_bbox=True)],
[
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'flip', 'flip_direction'))
]
])
]