-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathFirstClassFunctions_template.v
721 lines (541 loc) · 18.1 KB
/
FirstClassFunctions_template.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
Require Import Frap Program.
(** * Some data fodder for us to compute with later *)
(* Records are a handy way to define datatypes in terms of the named fields that
* each value must contain. *)
Record programming_language := {
Name : string;
PurelyFunctional : bool;
AppearedInYear : nat
}.
(* Here's a quick example of a set of programming languages, which we will use
* below in some example computations. *)
Definition pascal := {|
Name := "Pascal";
PurelyFunctional := false;
AppearedInYear := 1970
|}.
Definition clang := {|
Name := "C";
PurelyFunctional := false;
AppearedInYear := 1972
|}.
Definition gallina := {|
Name := "Gallina";
PurelyFunctional := true;
AppearedInYear := 1989
|}.
Definition haskell := {|
Name := "Haskell";
PurelyFunctional := true;
AppearedInYear := 1990
|}.
Definition ocaml := {|
Name := "OCaml";
PurelyFunctional := false;
AppearedInYear := 1996
|}.
Definition languages := [pascal; clang; gallina; haskell; ocaml].
(** * Classic list functions *)
(* The trio of "map/filter/reduce" are commonly presented as workhorse
* *higher-order functions* for lists. That is, they are functions that take
* functions as arguments. *)
(* [map] runs a function on every position of a list to make a new list. *)
Fixpoint map {A B} (f : A -> B) (ls : list A) : list B :=
match ls with
| nil => nil
| x :: ls' => f x :: map f ls'
end.
Compute map (fun n => n + 2) [1; 3; 8].
(* Note the use of an *anonymous function* above via [fun]. *)
(* [filter] keeps only those elements of a list that pass a Boolean test. *)
Fixpoint filter {A} (f : A -> bool) (ls : list A) : list A :=
match ls with
| nil => nil
| x :: ls' => if f x then x :: filter f ls' else filter f ls'
end.
Compute filter (fun n => if n <=? 3 then true else false) [1; 3; 8].
(* The [if ... then true else false] bit might seem wasteful. Actually, the
* [<=?] operator has a fancy type that needs converting to [bool]. We'll get
* more specific about such types in a future class. *)
(* [fold_left], a relative of "reduce," repeatedly applies a function to all
* elements of a list. *)
Fixpoint fold_left {A B} (f : B -> A -> B) (ls : list A) (acc : B) : B :=
match ls with
| nil => acc
| x :: ls' => fold_left f ls' (f acc x)
end.
Compute fold_left max [1; 3; 8] 0.
(* Another way to see [fold_left] in action: *)
Theorem fold_left3 : forall {A B} (f : B -> A -> B) (x y z : A) (acc : B),
fold_left f [x; y; z] acc = f (f (f acc x) y) z.
Proof.
simplify.
equality.
Qed.
(* Let's use these classics to implement a few simple "database queries" on the
* list of programming languages. Note that each field name from
* [programming_language] is itself a first-class function, for projecting that
* field from any record! *)
Compute map Name languages.
(* names of languages *)
Compute map Name (filter PurelyFunctional languages).
(* names of purely functional languages *)
Compute fold_left max (map AppearedInYear languages) 0.
(* maximum year in which a language appeared *)
Compute fold_left max (map AppearedInYear (filter PurelyFunctional languages)) 0.
(* maximum year in which a purely functional language appeared *)
(* To avoid confusing things, we'll revert to the standard library's (identical)
* versions of these functions for the remainder. *)
Reset map.
(** * Sorting, parameterized in a comparison operation *)
Fixpoint insertion_sort {A} (le : A -> A -> bool) (ls : list A) : list A.
Admitted.
Fixpoint sorted {A} (le : A -> A -> bool) (ls : list A) : bool :=
match ls with
| [] => true
| x1 :: ls' =>
match ls' with
| x2 :: _ => le x1 x2 && sorted le ls'
| [] => true
end
end.
(* Main theorem: [insertion_sort] produces only sorted lists. *)
Theorem insertion_sort_sorted : forall {A} (le : A -> A -> bool),
forall ls,
sorted le (insertion_sort le ls) = true.
Proof.
Admitted.
(* Let's do a quick example of using [insertion_sort] with a concrete
* comparator. *)
Definition not_introduced_later (l1 l2 : programming_language) : bool :=
if AppearedInYear l1 <=? AppearedInYear l2 then true else false.
Compute insertion_sort
not_introduced_later
[gallina; pascal; clang; ocaml; haskell].
Corollary insertion_sort_languages : forall langs,
sorted not_introduced_later (insertion_sort not_introduced_later langs) = true.
Proof.
Admitted.
(** * A language of functions and its interpreter *)
Inductive dyn :=
| Bool (b : bool)
| Number (n : nat)
| List (ds : list dyn).
Definition dmap (f : dyn -> dyn) (x : dyn) : dyn :=
match x with
| List ds => List (map f ds)
| _ => x
end.
Definition dfilter (f : dyn -> dyn) (x : dyn) : dyn :=
match x with
List ds => List (filter (fun arg => match f arg with
| Bool b => b
| _ => false
end) ds)
| _ => x
end.
Definition disZero (x : dyn) : dyn :=
match x with
| Number 0 => Bool true
| Number _ => Bool false
| _ => x
end.
Definition dnot (x : dyn) : dyn :=
match x with
| Bool b => Bool (negb b)
| x => x
end.
Inductive xform :=
| Identity
| Compose (xf1 xf2 : xform)
| Map (xf1 : xform)
| Filter (xf1 : xform)
| ConstantBool (b : bool)
| ConstantNumber (n : nat)
| IsZero
| Not.
Fixpoint transform (xf : xform) : dyn -> dyn :=
match xf with
| Identity => id
| Compose f1 f2 => compose (transform f1) (transform f2)
| Map f => dmap (transform f)
| Filter f => dfilter (transform f)
| ConstantBool b => fun _ => Bool b
| ConstantNumber n => fun _ => Number n
| IsZero => disZero
| Not => dnot
end.
Compute transform (Map IsZero) (List [Number 0; Number 1; Number 2; Number 0; Number 3]).
Compute transform (Filter IsZero) (List [Number 0; Number 1; Number 2; Number 0; Number 3]).
Fixpoint optimize (xf : xform) : xform.
Admitted.
Theorem optimize_ok : forall xf x, transform (optimize xf) x = transform xf x.
Proof.
Admitted.
(** ** Are these really optimizations? Can they ever grow a term's size? *)
Fixpoint size (xf : xform) : nat :=
match xf with
| Identity
| Not
| IsZero
| ConstantBool _
| ConstantNumber _ => 1
| Compose xf1 xf2 => 1 + size xf1 + size xf2
| Map xf
| Filter xf => 1 + size xf
end.
Theorem optimize_optimizes : forall xf, size (optimize xf) <= size xf.
Proof.
Admitted.
(** ** More interestingly, the same is true of the action of these
transformations on concrete values! *)
Fixpoint sum (ls : list nat) : nat :=
match ls with
| nil => 0
| x :: ls' => x + sum ls'
end.
Fixpoint dsize (d : dyn) : nat :=
match d with
| Bool _
| Number _ => 1
| List ds => 1 + sum (map dsize ds)
end.
Theorem neverGrow : forall xf x,
dsize (transform xf x) <= dsize x.
Proof.
Admitted.
(** * Combinators for syntax-tree transformations *)
(* Let's reprise the imperative language from the end of Interpreters. *)
Inductive arith : Set :=
| Const (n : nat)
| Var (x : var)
| Plus (e1 e2 : arith)
| Minus (e1 e2 : arith)
| Times (e1 e2 : arith).
Definition valuation := fmap var nat.
Fixpoint interp (e : arith) (v : valuation) : nat :=
match e with
| Const n => n
| Var x =>
match v $? x with
| None => 0
| Some n => n
end
| Plus e1 e2 => interp e1 v + interp e2 v
| Minus e1 e2 => interp e1 v - interp e2 v
| Times e1 e2 => interp e1 v * interp e2 v
end.
Inductive cmd :=
| Skip
| Assign (x : var) (e : arith)
| Sequence (c1 c2 : cmd)
| Repeat (e : arith) (body : cmd).
Fixpoint selfCompose {A} (f : A -> A) (n : nat) : A -> A :=
match n with
| O => fun x => x
| S n' => fun x => selfCompose f n' (f x)
end.
Lemma selfCompose_extensional : forall {A} (f g : A -> A) n x,
(forall y, f y = g y)
-> selfCompose f n x = selfCompose g n x.
Proof.
induct n; simplify; try equality.
rewrite H.
apply IHn.
trivial.
Qed.
Fixpoint exec (c : cmd) (v : valuation) : valuation :=
match c with
| Skip => v
| Assign x e => v $+ (x, interp e v)
| Sequence c1 c2 => exec c2 (exec c1 v)
| Repeat e body => selfCompose (exec body) (interp e v) v
end.
Fixpoint seqself (c : cmd) (n : nat) : cmd :=
match n with
| O => Skip
| S n' => Sequence c (seqself c n')
end.
(* Now consider a more abstract way of describing optimizations concisely. *)
Record rule := {
OnCommand : cmd -> cmd;
OnExpression : arith -> arith
}.
Fixpoint bottomUp (r : rule) (c : cmd) : cmd :=
match c with
| Skip => r.(OnCommand) Skip
| Assign x e => r.(OnCommand) (Assign x (r.(OnExpression) e))
| Sequence c1 c2 => r.(OnCommand) (Sequence (bottomUp r c1) (bottomUp r c2))
| Repeat e body => r.(OnCommand) (Repeat (r.(OnExpression) e) (bottomUp r body))
end.
Definition crule (f : cmd -> cmd) : rule :=
{| OnCommand := f; OnExpression := fun e => e |}.
Definition erule (f : arith -> arith) : rule :=
{| OnCommand := fun c => c; OnExpression := f |}.
Definition andThen (r1 r2 : rule) : rule.
Admitted.
Definition plus0 := erule (fun e =>
match e with
| Plus e' (Const 0) => e'
| _ => e
end).
Definition unrollLoops := crule (fun c =>
match c with
| Repeat (Const n) body => seqself body n
| _ => c
end).
Compute bottomUp plus0
(Sequence (Assign "x" (Plus (Var "x") (Const 0)))
(Assign "y" (Var "x"))).
Compute bottomUp unrollLoops
(Repeat (Plus (Const 2) (Const 0))
(Sequence (Assign "x" (Plus (Var "x") (Const 0)))
(Assign "y" (Var "x")))).
Compute bottomUp (andThen plus0 unrollLoops)
(Repeat (Plus (Const 2) (Const 0))
(Sequence (Assign "x" (Plus (Var "x") (Const 0)))
(Assign "y" (Var "x")))).
Definition correct (r : rule) : Prop.
Admitted.
Theorem crule_correct : forall f,
(forall c v, exec (f c) v = exec c v)
-> correct (crule f).
Proof.
Admitted.
Theorem erule_correct : forall f,
(forall e v, interp (f e) v = interp e v)
-> correct (erule f).
Proof.
Admitted.
Theorem andThen_correct : forall r1 r2,
correct r1
-> correct r2
-> correct (andThen r1 r2).
Proof.
Admitted.
Theorem bottomUp_correct : forall r,
correct r
-> forall c v, exec (bottomUp r c) v = exec c v.
Proof.
Admitted.
Definition rBottomUp (r : rule) : rule.
Admitted.
Theorem rBottomUp_correct : forall r,
correct r
-> correct (rBottomUp r).
Proof.
Admitted.
Definition zzz := Assign "x" (Plus (Plus (Plus (Var "x") (Const 0)) (Const 0)) (Const 0)).
Compute bottomUp plus0 zzz.
Compute bottomUp (rBottomUp plus0) zzz.
Compute bottomUp (rBottomUp (rBottomUp plus0)) zzz.
Compute bottomUp (rBottomUp (rBottomUp (rBottomUp plus0))) zzz.
(** * Motivating continuations with search problems *)
Fixpoint allSublists {A} (ls : list A) : list (list A) :=
match ls with
| [] => [[]]
| x :: ls' =>
let lss := allSublists ls' in
lss ++ map (fun ls'' => x :: ls'') lss
end.
Compute allSublists [1; 2; 3].
Fixpoint sublistSummingTo (ns : list nat) (target : nat) : option (list nat) :=
match filter (fun ns' => if sum ns' ==n target then true else false) (allSublists ns) with
| ns' :: _ => Some ns'
| [] => None
end.
Compute sublistSummingTo [1; 2; 3] 6.
Compute sublistSummingTo [1; 2; 3] 5.
Compute sublistSummingTo [1; 2; 3] 7.
(* This function will be handy to generate some test cases. *)
Fixpoint countingDown (from : nat) :=
match from with
| O => []
| S from' => from' :: countingDown from'
end.
Compute countingDown 10.
(* This one is pretty slow! There are quite a few sublists of
* [countingDown 18], you know. *)
Time Compute sublistSummingTo (countingDown 18) 1.
(** * The classics in continuation-passing style *)
(* We can rewrite the classic list higher-order functions in
* *continuation-passing style*, where they return answers by calling
* continuations rather than just returning normally. *)
(* And CPS versions of the additional functions used in our examples earlier *)
Definition NameK {R} (l : programming_language) (k : string -> R) : R :=
k (Name l).
Definition PurelyFunctionalK {R} (l : programming_language) (k : bool -> R) : R :=
k (PurelyFunctional l).
Definition AppearedInYearK {R} (l : programming_language) (k : nat -> R) : R :=
k (AppearedInYear l).
Definition maxK {R} (n1 n2 : nat) (k : nat -> R) : R :=
k (max n1 n2).
(* The examples from before give the same answers, when suitably translated. *)
(*
Compute mapK NameK languages (fun ls => ls).
Compute filterK PurelyFunctionalK languages (fun ls => mapK NameK ls (fun x => x)).
Compute mapK AppearedInYearK languages (fun ls => fold_leftK maxK ls 0 (fun x => x)).
Compute filterK PurelyFunctionalK languages
(fun ls1 => mapK AppearedInYearK ls1
(fun ls2 => fold_leftK maxK ls2 0 (fun x => x))).
Theorem names_ok : forall langs,
mapK NameK langs (fun ls => ls) = map Name langs.
Proof.
Admitted.
Theorem purenames_ok : forall langs,
filterK PurelyFunctionalK langs (fun ls => mapK NameK ls (fun x => x))
= map Name (filter PurelyFunctional langs).
Proof.
Admitted.
Theorem latest_ok : forall langs,
mapK AppearedInYearK langs (fun ls => fold_leftK maxK ls 0 (fun x => x))
= fold_left max (map AppearedInYear langs) 0.
Proof.
Admitted.
Theorem latestpure_ok : forall langs,
filterK PurelyFunctionalK langs
(fun ls1 => mapK AppearedInYearK ls1
(fun ls2 => fold_leftK maxK ls2 0 (fun x => x)))
= fold_left max (map AppearedInYear (filter PurelyFunctional langs)) 0.
Proof.
Admitted.
*)
(** * Tree traversals *)
Inductive tree {A} :=
| Leaf
| Node (l : tree) (d : A) (r : tree).
Arguments tree : clear implicits.
Fixpoint flatten {A} (t : tree A) : list A :=
match t with
| Leaf => []
| Node l d r => flatten l ++ d :: flatten r
end.
Fixpoint big (n : nat) : tree nat :=
match n with
| O => Leaf
| S n' => Node (big n') n Leaf
end.
Compute big 3.
Time Compute length (flatten (big 5000)).
(** * Proof of our motivating example *)
(* This theorem is quite intricate to get right. At this point in the class, it
* is not important to follow anything about this proof, really, but it's kinda
* cool, once digested. *)
(*
Theorem allSublistsK_ok : forall {A B} (ls : list A) (failed : unit -> B) found,
(* First, we describe what makes for a legit [found] continuation. *)
(forall sol,
(* For any solution we might ask it about,
* either [found] is going to accept that solution,
* returning the same answer no matter which failure continuation we
* pass: *)
(exists ans, (forall failed', found sol failed' = ans)
/\ ans <> failed tt)
(* ...and, by the way, this answer is never the same as the failure
* value (or we could get confused in case analysis). *)
(* OR [found] is going to reject this solution, invoking its failure
* continuation: *)
\/ (forall failed', found sol failed' = failed' tt))
(* Then we conclude a rather similar property for [allSublistsK]. *)
->
(* Option 1: there is a correct answer [sol], for which [found] returns
* [ans]. *)
(exists sol ans, In sol (allSublists ls)
/\ (forall failed', found sol failed' = ans)
/\ allSublistsK ls failed found = ans
/\ ans <> failed tt)
(* Option 2: there is no correct answer. *)
\/ ((forall sol, In sol (allSublists ls)
-> forall failed', found sol failed' = failed' tt)
/\ allSublistsK ls failed found = failed tt).
Proof.
induct ls; simplify.
specialize (H []).
first_order.
right.
propositional.
subst.
trivial.
trivial.
assert (let found := (fun (sol : list A) (failed' : unit -> B) =>
found sol (fun _ : unit => found (a :: sol) failed')) in
(exists (sol : list A) (ans : B),
In sol (allSublists ls) /\
(forall failed' : unit -> B, found sol failed' = ans) /\
allSublistsK ls failed found = ans /\ ans <> failed tt) \/
(forall sol : list A,
In sol (allSublists ls) -> forall failed' : unit -> B, found sol failed' = failed' tt) /\
allSublistsK ls failed found = failed tt).
apply IHls.
first_order.
generalize (H sol).
first_order.
specialize (H (a :: sol)).
first_order.
left.
exists x; propositional.
rewrite H0.
trivial.
right.
simplify.
rewrite H0.
trivial.
clear IHls.
simplify.
first_order.
generalize (H x); first_order.
left; exists x, x1; propositional.
apply in_or_app; propositional.
specialize (H1 failed).
specialize (H4 (fun _ => found (a :: x) failed)).
equality.
left; exists (a :: x), x0; propositional.
apply in_or_app; right; apply in_map_iff.
first_order.
specialize (H1 failed').
rewrite H4 in H1.
trivial.
right; propositional.
apply in_app_or in H2; propositional.
generalize (H sol); first_order.
apply H0 with (failed' := failed') in H3.
rewrite H2 in H3.
equality.
apply in_map_iff in H3.
first_order.
subst.
generalize (H x); first_order.
apply H0 with (failed' := failed) in H3.
equality.
apply H0 with (failed' := failed') in H3.
rewrite H2 in H3; trivial.
Qed.
(* At least we can wrap it all up in a simple correctness theorem! *)
Theorem sublistSummingToK_ok : forall ns target,
match sublistSummingToK ns target with
| None => forall sol, In sol (allSublists ns) -> sum sol <> target
| Some sol => In sol (allSublists ns) /\ sum sol = target
end.
Proof.
simplify.
unfold sublistSummingToK.
pose proof (allSublistsK_ok ns (fun _ => None)
(fun sol failed => if sum sol ==n target then Some sol else failed tt)).
cases H.
simplify.
cases (sum sol ==n target).
left; exists (Some sol); equality.
propositional.
first_order.
specialize (H0 (fun _ => None)).
cases (sum x ==n target); try equality.
subst.
rewrite H1.
propositional.
first_order.
rewrite H0.
simplify.
apply H with (failed' := fun _ => None) in H1.
cases (sum sol ==n target); equality.
Qed.
*)