-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathLambdaCalculusAndTypeSoundness.v
875 lines (732 loc) · 22.3 KB
/
LambdaCalculusAndTypeSoundness.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
* Chapter 11: Lambda Calculus and Simple Type Soundness
* Author: Adam Chlipala
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
Require Import Frap.
(* The last few chapters have focused on small programming languages that are
* representative of the essence of the imperative languages. We now turn to
* lambda-calculus, the usual representative of functional languages. *)
Module Ulc.
(* Programs are expressions, which we evaluate algebraically, rather than
* executing for side effects. *)
Inductive exp : Set :=
| Var (x : var)
| Abs (x : var) (body : exp)
(* A function that binds its argument to the given variable, evaluating the
* body expression *)
| App (e1 e2 : exp).
(* Applying a function to an argument *)
(* Key operation: within [e], changing every occurrence of variable [x] into
* [rep]. IMPORTANT: we will only apply this operation in contexts where
* [rep] is *closed*, meaning every [Var] refers to some enclosing [Abs], so
* as to avoid *variable capture*. See the book proper for a little more
* discussion. *)
Fixpoint subst (rep : exp) (x : var) (e : exp) : exp :=
match e with
| Var y => if y ==v x then rep else Var y
| Abs y e1 => Abs y (if y ==v x then e1 else subst rep x e1)
| App e1 e2 => App (subst rep x e1) (subst rep x e2)
end.
(** * Big-step semantics *)
(* This is the most straightforward way to give semantics to lambda terms:
* We evaluate any closed term into a value (that is, an [Abs]). *)
Inductive eval : exp -> exp -> Prop :=
| BigAbs : forall x e,
eval (Abs x e) (Abs x e)
| BigApp : forall e1 x e1' e2 v2 v,
eval e1 (Abs x e1')
-> eval e2 v2
-> eval (subst v2 x e1') v
-> eval (App e1 e2) v.
(* Note that we omit a [Var] case, since variable terms can't be *closed*,
* and therefore they aren't meaningful as top-level programs. *)
(* Which terms are values, that is, final results of execution? *)
Inductive value : exp -> Prop :=
| Value : forall x e, value (Abs x e).
(* We're cheating a bit here, *assuming* that the term is also closed. *)
Local Hint Constructors eval value : core.
(* Every value executes to itself. *)
Theorem value_eval : forall v,
value v
-> eval v v.
Proof.
invert 1; eauto.
Qed.
Local Hint Resolve value_eval : core.
(* Conversely, let's prove that [eval] only produces values. *)
Theorem eval_value : forall e v,
eval e v
-> value v.
Proof.
induct 1; eauto.
Qed.
Local Hint Resolve eval_value : core.
(* Some notations, to let us write more normal-looking lambda terms *)
Coercion Var : var >-> exp.
Notation "\ x , e" := (Abs x e) (at level 50).
Infix "@" := App (at level 49, left associativity).
(* Believe it or not, this is a Turing-complete language! Here's an example
* nonterminating program. *)
Example omega := (\"x", "x" @ "x") @ (\"x", "x" @ "x").
Theorem omega_no_eval : forall v, eval omega v -> False.
Proof.
induct 1.
invert H.
invert H0.
simplify.
apply IHeval3.
trivial.
Qed.
(** * Church Numerals, everyone's favorite example of lambda terms in
* action *)
(* Here are two curious definitions. *)
Definition zero := \"f", \"x", "x".
Definition plus1 := \"n", \"f", \"x", "f" @ ("n" @ "f" @ "x").
(* We can build up any natural number [n] as [plus1^n @ zero]. Let's prove
* that, in fact, these definitions constitute a workable embedding of the
* natural numbers in lambda-calculus. *)
(* A term [plus^n @ zero] evaluates to something very close to what this
* function returns. *)
Fixpoint canonical' (n : nat) : exp :=
match n with
| O => "x"
| S n' => "f" @ ((\"f", \"x", canonical' n') @ "f" @ "x")
end.
(* This missing piece is this wrapper. *)
Definition canonical n := \"f", \"x", canonical' n.
(* Let's formalize our definition of what it means to represent a number. *)
Definition represents (e : exp) (n : nat) :=
eval e (canonical n).
(* Zero passes the test. *)
Theorem zero_ok : represents zero 0.
Proof.
unfold zero, represents, canonical.
simplify.
econstructor.
Qed.
(* So does our successor operation. *)
Theorem plus1_ok : forall e n, represents e n
-> represents (plus1 @ e) (S n).
Proof.
unfold plus1, represents, canonical; simplify.
econstructor.
econstructor.
eassumption.
simplify.
econstructor.
Qed.
(* What's basically going on here? The representation of number [n] is [N]
* such that, for any function [f]:
* N(f) = f^n
* That is, we represent a number as its repeated-composition operator.
* So, given a number, we can use it to repeat any operation. In particular,
* to implement addition, we can just repeat [plus1]! *)
Definition add := \"n", \"m", "n" @ plus1 @ "m".
(* Our addition works properly on this test case. *)
Example add_1_2 : exists v,
eval (add @ (plus1 @ zero) @ (plus1 @ (plus1 @ zero))) v
/\ eval (plus1 @ (plus1 @ (plus1 @ zero))) v.
Proof.
eexists; propositional.
repeat (econstructor; simplify).
repeat econstructor.
Qed.
(* By the way: since [canonical'] doesn't mention variable "m", substituting
* for "m" has no effect. This fact will come in handy shortly. *)
Lemma subst_m_canonical' : forall m n,
subst m "m" (canonical' n) = canonical' n.
Proof.
induct n; simplify; equality.
Qed.
(* This inductive proof is the workhorse for the next result, so let's skip
* ahead there. *)
Lemma add_ok' : forall m n,
eval
(subst (\ "f", (\ "x", canonical' m)) "x"
(subst (\ "n", (\ "f", (\ "x", "f" @ (("n" @ "f") @ "x")))) "f"
(canonical' n))) (canonical (n + m)).
Proof.
induct n; simplify.
econstructor.
econstructor.
econstructor.
econstructor.
econstructor.
econstructor.
econstructor.
simplify.
econstructor.
econstructor.
simplify.
eassumption.
simplify.
econstructor.
Qed.
(* [add] properly encodes the usual addition. *)
Theorem add_ok : forall n ne m me,
represents ne n
-> represents me m
-> represents (add @ ne @ me) (n + m).
Proof.
unfold represents; simplify.
econstructor.
econstructor.
econstructor.
eassumption.
simplify.
econstructor.
eassumption.
simplify.
econstructor.
econstructor.
econstructor.
econstructor.
simplify.
econstructor.
econstructor.
rewrite subst_m_canonical'.
apply add_ok'.
Qed.
(* Let's repeat the same exercise for multiplication. *)
Definition mult := \"n", \"m", "n" @ (add @ "m") @ zero.
Example mult_1_2 : exists v,
eval (mult @ (plus1 @ zero) @ (plus1 @ (plus1 @ zero))) v
/\ eval (plus1 @ (plus1 @ zero)) v.
Proof.
eexists; propositional.
repeat (econstructor; simplify).
repeat econstructor.
Qed.
Lemma mult_ok' : forall m n,
eval
(subst (\ "f", (\ "x", "x")) "x"
(subst
(\ "m",
((\ "f", (\ "x", canonical' m)) @
(\ "n", (\ "f", (\ "x", "f" @ (("n" @ "f") @ "x"))))) @ "m")
"f" (canonical' n))) (canonical (n * m)).
Proof.
induct n; simplify.
econstructor.
econstructor.
econstructor.
econstructor.
econstructor.
econstructor.
econstructor.
simplify.
econstructor.
econstructor.
simplify.
eassumption.
simplify.
econstructor.
econstructor.
econstructor.
econstructor.
simplify.
econstructor.
econstructor.
rewrite subst_m_canonical'.
apply add_ok'. (* Note the recursive appeal to correctness of [add]. *)
Qed.
Theorem mult_ok : forall n ne m me,
represents ne n
-> represents me m
-> represents (mult @ ne @ me) (n * m).
Proof.
unfold represents; simplify.
econstructor.
econstructor.
econstructor.
eassumption.
simplify.
econstructor.
eassumption.
simplify.
econstructor.
econstructor.
econstructor.
econstructor.
econstructor.
econstructor.
simplify.
econstructor.
simplify.
econstructor.
econstructor.
simplify.
rewrite subst_m_canonical'.
apply mult_ok'.
Qed.
(** * Small-step semantics *)
(* We can also port to this setting our small-step semantics style. *)
(* Function application (called "beta reduction") is the big rule here. *)
Inductive step : exp -> exp -> Prop :=
| Beta : forall x e v,
value v
-> step (App (Abs x e) v) (subst v x e)
(* However, we also need bureaucractic rules for pushing evaluation inside
* applications. *)
| App1 : forall e1 e1' e2,
step e1 e1'
-> step (App e1 e2) (App e1' e2)
| App2 : forall v e2 e2',
value v
-> step e2 e2'
-> step (App v e2) (App v e2').
(* Note how that last rule enforces a deterministic evaluation order!
* We call it *call-by-value*. *)
Local Hint Constructors step : core.
(* Here we now go through a proof of equivalence between big- and small-step
* semantics, though we won't spend any further commentary on it. *)
Lemma step_eval' : forall e1 e2,
step e1 e2
-> forall v, eval e2 v
-> eval e1 v.
Proof.
induct 1; simplify; eauto.
invert H0.
econstructor.
apply IHstep.
eassumption.
eassumption.
assumption.
invert H1.
econstructor.
eassumption.
apply IHstep.
eassumption.
assumption.
Qed.
Local Hint Resolve step_eval' : core.
Theorem step_eval : forall e v,
step^* e v
-> value v
-> eval e v.
Proof.
induct 1; eauto.
Qed.
Local Hint Resolve eval_value : core.
Theorem step_app1 : forall e1 e1' e2,
step^* e1 e1'
-> step^* (App e1 e2) (App e1' e2).
Proof.
induct 1; eauto.
Qed.
Theorem step_app2 : forall e2 e2' v,
value v
-> step^* e2 e2'
-> step^* (App v e2) (App v e2').
Proof.
induct 2; eauto.
Qed.
Theorem eval_step : forall e v,
eval e v
-> step^* e v.
Proof.
induct 1; eauto.
eapply trc_trans.
apply step_app1.
eassumption.
eapply trc_trans.
eapply step_app2.
constructor.
eassumption.
econstructor.
constructor.
eauto.
assumption.
Qed.
End Ulc.
(** * Now we turn to a variant of lambda calculus with static type-checking.
* This variant is called *simply typed* lambda calculus, and *simple* has a
* technical meaning, basically meaning "no polymorphism" in the sense of
* example file Polymorphism.v from this book. *)
Module Stlc.
(* We add expression forms for numeric constants and addition. *)
Inductive exp : Set :=
| Var (x : var)
| Const (n : nat)
| Plus (e1 e2 : exp)
| Abs (x : var) (e1 : exp)
| App (e1 e2 : exp).
(* Values (final results of evaluation) *)
Inductive value : exp -> Prop :=
| VConst : forall n, value (Const n)
| VAbs : forall x e1, value (Abs x e1).
(* Substitution (not applicable when [e1] isn't closed, to avoid some complexity
* that we don't need) *)
Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp :=
match e2 with
| Var y => if y ==v x then e1 else Var y
| Const n => Const n
| Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'')
| Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2')
| App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'')
end.
(* Small-step, call-by-value evaluation *)
Inductive step : exp -> exp -> Prop :=
(* These rules show the real action of the semantics. *)
| Beta : forall x e v,
value v
-> step (App (Abs x e) v) (subst v x e)
| Add : forall n1 n2,
step (Plus (Const n1) (Const n2)) (Const (n1 + n2))
(* Then we have a bunch of bureaucratic, repetitive rules encoding evaluation
* order. See next lecture for how to streamline this part, but for now note
* that the [value] premises below are crucial to enforce a single order of
* evaluation. *)
| App1 : forall e1 e1' e2,
step e1 e1'
-> step (App e1 e2) (App e1' e2)
| App2 : forall v e2 e2',
value v
-> step e2 e2'
-> step (App v e2) (App v e2')
| Plus1 : forall e1 e1' e2,
step e1 e1'
-> step (Plus e1 e2) (Plus e1' e2)
| Plus2 : forall v e2 e2',
value v
-> step e2 e2'
-> step (Plus v e2) (Plus v e2').
(* It's easy to wrap everything as a transition system. *)
Definition trsys_of (e : exp) := {|
Initial := {e};
Step := step
|}.
(* That language is suitable to describe with a static *type system*. Here's
* our modest, but countably infinite, set of types. *)
Inductive type :=
| Nat (* Numbers *)
| Fun (dom ran : type) (* Functions *).
(* Our typing relation (also often called a "judgment") uses *typing contexts*
* (not to be confused with evaluation contexts) to map free variables to
* their types. Free variables are those that don't refer to enclosing [Abs]
* binders. *)
Inductive has_ty : fmap var type -> exp -> type -> Prop :=
| HtVar : forall G x t,
G $? x = Some t
-> has_ty G (Var x) t
| HtConst : forall G n,
has_ty G (Const n) Nat
| HtPlus : forall G e1 e2,
has_ty G e1 Nat
-> has_ty G e2 Nat
-> has_ty G (Plus e1 e2) Nat
| HtAbs : forall G x e1 t1 t2,
has_ty (G $+ (x, t1)) e1 t2
-> has_ty G (Abs x e1) (Fun t1 t2)
| HtApp : forall G e1 e2 t1 t2,
has_ty G e1 (Fun t1 t2)
-> has_ty G e2 t1
-> has_ty G (App e1 e2) t2.
Local Hint Constructors value step has_ty : core.
(* Some notation to make it more pleasant to write programs *)
Infix "-->" := Fun (at level 60, right associativity).
Coercion Const : nat >-> exp.
Infix "^+^" := Plus (at level 50).
Coercion Var : var >-> exp.
Notation "\ x , e" := (Abs x e) (at level 51).
Infix "@" := App (at level 49, left associativity).
(* Some examples of typed programs *)
Example one_plus_one : has_ty $0 (1 ^+^ 1) Nat.
Proof.
repeat (econstructor; simplify).
Qed.
Example add : has_ty $0 (\"n", \"m", "n" ^+^ "m") (Nat --> Nat --> Nat).
Proof.
repeat (econstructor; simplify).
Qed.
Example eleven : has_ty $0 ((\"n", \"m", "n" ^+^ "m") @ 7 @ 4) Nat.
Proof.
repeat (econstructor; simplify).
Qed.
Example seven_the_long_way : has_ty $0 ((\"x", "x") @ (\"x", "x") @ 7) Nat.
Proof.
repeat (econstructor; simplify).
Qed.
(** * Let's prove type soundness first without much automation. *)
(* What useful invariants could we prove about programs in this language? How
* about that, at every point, either they're finished executing or they can
* take further steps? For instance, a program that tried to add a function
* to a number would not satisfy that condition, and we call it *stuck*. We
* want to prove that typed programs can never become stuck. Here's a good
* invariant to strive for. *)
Definition unstuck e := value e
\/ (exists e' : exp, step e e').
(* Now we're ready for the first of the two key properties to establish that
* invariant: well-typed programs are never stuck. *)
Lemma progress : forall e t,
has_ty $0 e t
-> unstuck e.
Proof.
unfold unstuck; induct 1; simplify; try equality.
left.
constructor.
propositional.
right.
(* Some automation is needed here to maintain compatibility with
* name generation in different Coq versions. *)
match goal with
| [ H1 : value e1, H2 : has_ty $0 e1 _ |- _ ] => invert H1; invert H2
end.
match goal with
| [ H1 : value e2, H2 : has_ty $0 e2 _ |- _ ] => invert H1; invert H2
end.
exists (Const (n + n0)).
constructor.
match goal with
| [ H : exists x, _ |- _ ] => invert H
end.
right.
exists (x ^+^ e2).
constructor.
assumption.
match goal with
| [ H : exists x, _ |- _ ] => invert H
end.
right.
exists (e1 ^+^ x).
apply Plus2.
assumption.
assumption.
match goal with
| [ H : exists x, _ |- _ ] => invert H
end.
right.
exists (x ^+^ e2).
constructor.
assumption.
left.
constructor.
propositional.
right.
match goal with
| [ H1 : value e1, H2 : has_ty $0 e1 _ |- _ ] => invert H1; invert H2
end.
exists (subst e2 x e0).
constructor.
assumption.
match goal with
| [ H : exists x, _ |- _ ] => invert H
end.
right.
exists (x @ e2).
constructor.
assumption.
match goal with
| [ H : exists x, _ |- _ ] => invert H
end.
right.
exists (e1 @ x).
constructor.
assumption.
assumption.
match goal with
| [ H : exists x, step e1 _ |- _ ] => invert H
end.
right.
exists (App x e2).
constructor.
assumption.
Qed.
(* Inclusion between typing contexts is preserved by adding the same new mapping
* to both. *)
Lemma weakening_override : forall (G G' : fmap var type) x t,
(forall x' t', G $? x' = Some t' -> G' $? x' = Some t')
-> (forall x' t', G $+ (x, t) $? x' = Some t'
-> G' $+ (x, t) $? x' = Some t').
Proof.
simplify.
cases (x ==v x'); simplify; eauto.
Qed.
(* This lemma lets us transplant a typing derivation into a new context that
* includes the old one. *)
Lemma weakening : forall G e t,
has_ty G e t
-> forall G', (forall x t, G $? x = Some t -> G' $? x = Some t)
-> has_ty G' e t.
Proof.
induct 1; simplify.
constructor.
apply H0.
assumption.
constructor.
constructor.
apply IHhas_ty1.
assumption.
apply IHhas_ty2.
assumption.
constructor.
apply IHhas_ty.
apply weakening_override.
assumption.
econstructor.
apply IHhas_ty1.
assumption.
apply IHhas_ty2.
assumption.
Qed.
(* Replacing a variable with a properly typed term preserves typing. *)
Lemma substitution : forall G x t' e t e',
has_ty (G $+ (x, t')) e t
-> has_ty $0 e' t'
-> has_ty G (subst e' x e) t.
Proof.
induct 1; simplify.
cases (x0 ==v x).
simplify.
invert H.
eapply weakening.
eassumption.
simplify.
equality.
simplify.
constructor.
assumption.
constructor.
constructor.
eapply IHhas_ty1; equality.
eapply IHhas_ty2; equality.
cases (x0 ==v x).
constructor.
eapply weakening.
eassumption.
simplify.
cases (x0 ==v x1).
simplify.
assumption.
simplify.
assumption.
constructor.
eapply IHhas_ty.
maps_equal.
assumption.
econstructor.
eapply IHhas_ty1; equality.
eapply IHhas_ty2; equality.
Qed.
(* OK, now we're almost done. Full steps really do preserve typing! *)
Lemma preservation : forall e1 e2,
step e1 e2
-> forall t, has_ty $0 e1 t
-> has_ty $0 e2 t.
Proof.
induct 1; simplify.
invert H0.
invert H4.
eapply substitution.
eassumption.
assumption.
invert H.
constructor.
invert H0.
econstructor.
apply IHstep.
eassumption.
assumption.
invert H1.
econstructor.
eassumption.
apply IHstep.
assumption.
invert H0.
constructor.
apply IHstep.
assumption.
assumption.
invert H1.
constructor.
assumption.
apply IHstep.
assumption.
Qed.
(* Now watch this! Though this syntactic approach to type soundness is usually
* presented from scratch as a proof technique, it turns out that the two key
* properties, progress and preservation, are just instances of the same methods
* we've been applying all along with invariants of transition systems! *)
Theorem safety : forall e t, has_ty $0 e t
-> invariantFor (trsys_of e) unstuck.
Proof.
simplify.
(* Step 1: strengthen the invariant. In particular, the typing relation is
* exactly the right stronger invariant! Our progress theorem proves the
* required invariant inclusion. *)
apply invariant_weaken with (invariant1 := fun e' => has_ty $0 e' t).
(* Step 2: apply invariant induction, whose induction step turns out to match
* our preservation theorem exactly! *)
apply invariant_induction; simplify.
equality.
eapply preservation.
eassumption.
assumption.
simplify.
eapply progress.
eassumption.
Qed.
(** * Let's do that again with more automation, whose details are beyond the
* scope of the book. *)
Ltac t0 := match goal with
| [ H : ex _ |- _ ] => invert H
| [ H : _ /\ _ |- _ ] => invert H
| [ |- context[?x ==v ?y] ] => cases (x ==v y)
| [ H : Some _ = Some _ |- _ ] => invert H
| [ H : step _ _ |- _ ] => invert1 H
| [ H : has_ty _ ?e _, H' : value ?e |- _ ] => invert H'; invert H
| [ H : has_ty _ _ _ |- _ ] => invert1 H
end; subst.
Ltac t := simplify; propositional; repeat (t0; simplify); try equality; eauto 6.
Lemma progress_snazzy : forall e t,
has_ty $0 e t
-> value e
\/ (exists e' : exp, step e e').
Proof.
induct 1; t.
Qed.
Local Hint Resolve weakening_override : core.
Lemma weakening_snazzy : forall G e t,
has_ty G e t
-> forall G', (forall x t, G $? x = Some t -> G' $? x = Some t)
-> has_ty G' e t.
Proof.
induct 1; t.
Qed.
Local Hint Resolve weakening_snazzy : core.
(* Replacing a typing context with an equal one has no effect (useful to guide
* proof search as a hint). *)
Lemma has_ty_change : forall G e t,
has_ty G e t
-> forall G', G' = G
-> has_ty G' e t.
Proof.
t.
Qed.
Local Hint Resolve has_ty_change : core.
Lemma substitution_snazzy : forall G x t' e t e',
has_ty (G $+ (x, t')) e t
-> has_ty $0 e' t'
-> has_ty G (subst e' x e) t.
Proof.
induct 1; t.
Qed.
Local Hint Resolve substitution_snazzy : core.
Lemma preservation_snazzy : forall e1 e2,
step e1 e2
-> forall t, has_ty $0 e1 t
-> has_ty $0 e2 t.
Proof.
induct 1; t.
Qed.
Local Hint Resolve progress_snazzy preservation_snazzy : core.
Theorem safety_snazzy : forall e t, has_ty $0 e t
-> invariantFor (trsys_of e)
(fun e' => value e'
\/ exists e'', step e' e'').
Proof.
simplify.
apply invariant_weaken with (invariant1 := fun e' => has_ty $0 e' t); eauto.
apply invariant_induction; simplify; eauto; equality.
Qed.
End Stlc.