-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsuffixarray.cpp
279 lines (240 loc) · 7.84 KB
/
suffixarray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#include <fstream>
#include <iostream>
#include "misc/utils.h"
#include "suffixarray.h"
namespace CSA
{
//--------------------------------------------------------------------------
SuffixArray::SuffixArray(const std::string& base_name, bool print) :
ok(false),
data(0), sa(0), original_sa(0), ranks(0), data_size(0),
sequences(0)
{
std::ifstream data_file(base_name.c_str(), std::ios_base::binary);
if(!data_file)
{
std::cerr << "Error: Cannot open data file " << base_name << "!" << std::endl;
return;
}
this->data_size = fileSize(data_file);
this->data = new uchar[this->data_size];
data_file.read((char*)(this->data), data_size);
data_file.close();
std::string sa_name = base_name + SA_EXTENSION;
std::ifstream sa_file(sa_name.c_str(), std::ios_base::binary);
if(!sa_file)
{
std::cerr << "Error: Cannot open suffix array file " << sa_name << "!" << std::endl;
return;
}
sa_file.read((char*)&(this->sequences), sizeof(uint));
this->sa = new uint[this->data_size];
sa_file.read((char*)(this->sa), this->data_size * sizeof(uint));
sa_file.close();
this->original_sa = this->sa; this->sa += this->sequences;
this->ok = true;
}
SuffixArray::SuffixArray(uchar* _data, uint bytes, uint threads) :
ok(false),
data(_data), sa(0), original_sa(0), ranks(0), data_size(bytes),
sequences(0)
{
if(_data == 0 || bytes == 0)
{
std::cerr << "Error: No input data given for suffix array construction!" << std::endl;
return;
}
for(uint i = 0; i < this->data_size; i++) { if(this->data[i] == '\0') { this->sequences++; } }
if(this->data[this->data_size - 1] != '\0')
{
std::cerr << "Error: Input data must end with \\0!" << std::endl;
return;
}
short_pair* pairs = simpleSuffixSort(this->data, this->data_size, this->sequences, threads);
this->sa = new uint[this->data_size];
for(uint i = 0; i < this->data_size; i++) { this->sa[i] = pairs[i].first; }
delete[] pairs;
this->original_sa = this->sa; this->sa += this->sequences;
this->ok = true;
}
SuffixArray::SuffixArray(uchar* _data, usint* ra, uint bytes, uint threads) :
ok(false),
data(_data), sa(0), original_sa(0), ranks(ra), data_size(bytes),
sequences(0)
{
if(_data == 0 || ra == 0 || bytes == 0)
{
std::cerr << "Error: No input data given for suffix array construction!" << std::endl;
return;
}
for(uint i = 0; i < this->data_size; i++) { if(this->data[i] == '\0') { this->sequences++; } }
if(this->data[this->data_size - 1] != '\0')
{
std::cerr << "Error: Input data must end with \\0!" << std::endl;
return;
}
pair_type* pairs = new pair_type[this->data_size];
for(usint i = 0; i < this->data_size; i++) { pairs[i] = pair_type(this->ranks[i], i); }
#ifdef MULTITHREAD_SUPPORT
omp_set_num_threads(threads);
#endif
parallelSort(pairs, pairs + this->data_size);
this->sa = new uint[this->data_size];
for(uint i = 0; i < this->data_size; i++) { this->sa[i] = pairs[i].second; }
delete[] pairs;
this->original_sa = this->sa; this->sa += this->sequences;
this->ok = true;
}
SuffixArray::~SuffixArray()
{
delete[] this->data; this->data = 0;
delete[] this->original_sa; this->sa = 0; this->original_sa = 0;
delete[] this->ranks; this->ranks = 0;
this->ok = false;
}
void
SuffixArray::writeTo(const std::string& base_name, bool write_data) const
{
if(!this->ok) { return; }
if(write_data)
{
std::ofstream data_file(base_name.c_str(), std::ios_base::binary);
if(!data_file)
{
std::cerr << "Error: Cannot open data file " << base_name << "!" << std::endl;
return;
}
data_file.write((char*)(this->data), this->data_size);
data_file.close();
}
std::string sa_name = base_name + SA_EXTENSION;
std::ofstream sa_file(sa_name.c_str(), std::ios_base::binary);
if(!sa_file)
{
std::cerr << "Error: Cannot open suffix array file " << sa_name << "!" << std::endl;
return;
}
sa_file.write((char*)&(this->sequences), sizeof(uint));
sa_file.write((char*)(this->original_sa), this->data_size * sizeof(uint));
sa_file.close();
}
//--------------------------------------------------------------------------
pair_type
SuffixArray::count(const std::string& pattern) const
{
pair_type range;
for(uint i = 0; i < pattern.length(); i++)
{
if(pattern[i] == '\0')
{
std::cerr << "Error: Pattern must not contain \\0!" << std::endl;
return EMPTY_PAIR;
}
}
// Lower bound for the range.
sint low = 0, high = this->getSize() - 1;
uint last_high = high;
while(low < high)
{
uint mid = low + (high - low) / 2;
uint matched = this->match(pattern, mid);
if(matched >= pattern.length()) { high = mid; }
else if((uchar)(pattern[matched]) < this->data[this->sa[mid] + matched])
{
high = ((sint)mid) - 1; last_high = high;
}
else { low = mid + 1; }
}
if(this->match(pattern, low) == pattern.length()) { range.first = low; }
else { return EMPTY_PAIR; }
// Upper bound for the range.
high = last_high;
while(low < high)
{
uint mid = low + (high - low + 1) / 2;
uint matched = this->match(pattern, mid);
if(matched >= pattern.length()) { low = mid; }
else { high = mid - 1; }
}
range.second = high;
return range;
}
uint
SuffixArray::match(const std::string& pattern, uint index) const
{
uint matched = 0;
for(uint pos = this->sa[index]; matched < pattern.length() && (uchar)(pattern[matched]) == this->data[pos]; matched++, pos++);
return matched;
}
uint*
SuffixArray::locate(pair_type range) const
{
if(isEmpty(range) || range.second >= this->getSize()) { return 0; }
uint* result = new uint[length(range)];
for(usint i = range.first; i <= range.second; i++) { result[i - range.first] = this->sa[i]; }
return result;
}
uint
SuffixArray::locate(uint index) const
{
if(index >= this->getSize()) { return this->data_size; }
return this->sa[index];
}
//--------------------------------------------------------------------------
uint*
SuffixArray::getLCPArray(bool getPLCP) const
{
if(!(this->isOk())) { return 0; }
uint* plcp = new uint[this->data_size];
for(uint i = 0; i < this->data_size; i++) { plcp[i] = this->data_size; }
// Fill in the irreducible PLCP values.
for(uint i = 0; i < this->sequences; i++)
{
plcp[this->original_sa[i]] = 0;
}
for(uint i = this->sequences; i < this->data_size; i++)
{
uint j = this->original_sa[i - 1], k = this->original_sa[i];
if(j == 0 || k == 0 || this->data[j - 1] != this->data[k - 1] || this->data[j - 1] == 0)
{
uint temp = 0;
while(this->data[j + temp] == this->data[k + temp] && this->data[j + temp] != 0) { temp++; }
plcp[k] = temp;
}
}
// Fill in the rest of the values.
for(uint i = 1; i < this->data_size; i++)
{
if(plcp[i] >= this->data_size) { plcp[i] = plcp[i - 1] - 1; }
}
if(getPLCP) { return plcp; }
// Convert to LCP array.
uint* lcp = new uint[this->getSize()];
for(uint i = 0; i < this->getSize(); i++)
{
lcp[i] = plcp[this->sa[i]];
}
delete[] plcp;
return lcp;
}
//--------------------------------------------------------------------------
usint
SuffixArray::reportSize(bool print) const
{
usint bytes = sizeof(*this) + this->data_size * (1 + sizeof(uint));
if(this->ranks != 0) { bytes += this->data_size + sizeof(usint); }
if(print)
{
std::cout << "Data: " << (this->data_size / (double)MEGABYTE) << " MB" << std::endl;
std::cout << "Suffix array: " << (this->data_size * sizeof(uint) / (double)MEGABYTE) << " MB" << std::endl;
if(this->ranks != 0)
{
std::cout << "Rank array: " << (this->data_size * sizeof(usint) / (double)MEGABYTE) << " MB" << std::endl;
}
std::cout << "Total size: " << (bytes / (double)MEGABYTE) << " MB" << std::endl;
std::cout << std::endl;
}
return bytes;
}
//--------------------------------------------------------------------------
} // namespace CSA