Skip to content

Latest commit

 

History

History
82 lines (65 loc) · 2.87 KB

README.md

File metadata and controls

82 lines (65 loc) · 2.87 KB

This NCE module is forked from the pytorch/examples repo.

Requirements

Please run pip install -r requirements first to see if you have the required python lib.

  • tqdm is used for process bar during training

New Arguments

  • --nce: whether to use NCE as approximation
  • --noise-ratio <10>: numbers of noise samples per data sample
  • --norm-term <9>: the constant normalization term Ln(z)
  • --index-module <linear>: index module to use for NCE module (currently and available, does not support PPL calculating )
  • --train: train or just evaluation existing model
  • --vocab <None>: use vocabulary file if specified, otherwise use the words in train.txt

Examples

Run NCE criterion with linear module:

python main.py --cuda --noise-ratio 10 --norm-term 9 --nce --train

Run NCE criterion with gru module:

python main.py --cuda --noise-ratio 10 --norm-term 9 --nce --train --index-module gru

Run conventional CE criterion:

python main.py --cuda --train

File structure

  • log/: some log files of this scripts
  • nce.py: the NCE module wrapper
  • index_linear.py: an index module used by NCE, as a replacement for normal Linear module
  • index_gru.py: an index module used by NCE, as a replacement for the whole language model module
  • model.py: the wrapper of all nn.Modules.
  • main.py: entry point
  • utils.py: some util functions for better abstraction

Modified README from Pytorch/examples

This example trains a multi-layer RNN (Elman, GRU, or LSTM) on a language modeling task. By default, the training script uses the PTB dataset, provided. The trained model can then be used by the generate script to generate new text.

python main.py --cuda --epochs 6        # Train a LSTM on PTB with CUDA

The model uses the nn.LSTM module which will automatically use the cuDNN backend if run on CUDA with cuDNN installed.

During training, if a keyboard interrupt (Ctrl-C) is received, training is stopped and the current model is evaluted against the test dataset.

The main.py script accepts the following arguments:

optional arguments:
  -h, --help         show this help message and exit
  --data DATA        location of the data corpus
  --emsize EMSIZE    size of word embeddings
  --nhid NHID        humber of hidden units per layer
  --nlayers NLAYERS  number of layers
  --lr LR            initial learning rate
  --lr-decay         learning rate decay when no progress is observed on validation set
  --weight-decay     weight decay(L2 normalization)
  --clip CLIP        gradient clipping
  --epochs EPOCHS    upper epoch limit
  --batch-size N     batch size
  --dropout DROPOUT  dropout applied to layers (0 = no dropout)
  --seed SEED        random seed
  --cuda             use CUDA
  --log-interval N   report interval
  --save SAVE        path to save the final model