-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo.py
497 lines (455 loc) · 21 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
from misc.visualization import save_video as SaveVideo
from solver import Solver
import warnings
import numpy as np
from misc.utils import denorm
import os
from misc.utils import TimeNow_str, to_cuda, norm
from misc.visualization import vis_parsing_maps, bisenet2sean
from misc.mask_utils import scatterMask, label2mask, label2mask_plain
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torchvision import io
import torch
import torch.nn.functional as F
from PIL import Image
from tqdm import tqdm
import random
from metrics.attribute_model import AttNet
from misc.utils import scale_image, create_arrow, create_text
from facenet_pytorch import MTCNN
warnings.filterwarnings('ignore')
_FORMAT_ = ['.png', '.jpg']
def Glob(dirname):
from glob import glob
files = []
for _type in _FORMAT_:
files += glob(os.path.join(dirname, '*' + _type))
files = sorted(files)
return files
class get_face(object):
def __init__(self, image_size=256):
self.mtcnn = MTCNN(image_size=image_size, margin=image_size // 2)
# self.mtcnn = MTCNN(image_size=image_size, margin=image_size // 2.5)
# self.mtcnn = MTCNN(image_size=image_size, margin=image_size // 3)
# self.mtcnn = MTCNN(image_size=image_size, margin=image_size // 5)
def __call__(self, x):
if isinstance(x, torch.Tensor):
out = []
for _x in x:
out.append(self(transforms.ToPILImage()(_x)))
out = torch.stack(out, dim=0)
return out
elif isinstance(x, Image.Image):
return denorm(self.mtcnn(x))
else:
raise TypeError(f"Only receive Tensor or Image type, not {x.type}")
class Demo(Solver):
def __init__(self, args, data_loader):
super().__init__(args, data_loader)
self.image_size = self.args.image_size_test
self.init_seg()
self.init_sean()
self.get_face = get_face(args.image_size)
self.n_domains = self.args.n_domains
self.normalize = transforms.Compose([
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
self.transform_rgb = transforms.Compose([
transforms.Resize((self.image_size, self.image_size),
interpolation=Image.ANTIALIAS),
transforms.ToTensor(),
])
self.transform_sem = transforms.Compose([
transforms.Resize((self.image_size, self.image_size),
interpolation=Image.NEAREST),
transforms.ToTensor(),
])
self.rgb_video = False
if os.path.isdir(self.args.rgb_demo):
self.rgb_demo = Glob(self.args.rgb_demo)
elif os.path.isfile(
self.args.rgb_demo) and 'mp4' not in self.args.rgb_demo:
self.rgb_demo = [self.args.rgb_demo]
elif 'mp4' in self.args.rgb_demo:
self.rgb_demo = self.read_video(self.args.rgb_demo)[0]
self.rgb_video = True
else:
raise TypeError("You must enter a valid rgb file or directory.")
if self.args.rgb_label:
self.rgb_label = []
for f in self.args.rgb_label.split(','):
self.rgb_label.extend([1 - float(f), float(f)])
self.rgb_label = torch.FloatTensor(self.rgb_label)
else:
self.rgb_label = None
self.run_bisenet = False
if os.path.isdir(self.args.sem_demo):
self.sem_demo = Glob(self.args.sem_demo)
elif os.path.isfile(self.args.sem_demo):
self.sem_demo = [self.args.sem_demo]
else:
self.run_bisenet = True
self.attnet = to_cuda(AttNet())
def init_seg(self):
from metrics.segmentation_model import BiSeNet
self.seg_model = BiSeNet(n_classes=19)
file_pth = 'metrics/segmentation_weights.pth'
weights = torch.load(file_pth,
map_location=lambda storage, loc: storage)
self.seg_model.load_state_dict(weights)
self.seg_model = to_cuda(self.seg_model)
self.seg_model.eval()
self.bisenet_transform = transforms.Compose([
# transforms.ToTensor(),
# transforms.Resize((512, 512), interpolation=Image.ANTIALIAS),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
def init_sean(self):
from metrics.smileSYN import SMILE_SYN
self.sean = SMILE_SYN(self.image_size)
def get_sample_ref(self, path='', files=False):
if path == '':
path = self.args.ref_demo
if not os.path.isdir(path) and not os.path.isfile(path):
raise TypeError(f"{path} not valid or not found.")
print('Getting reference samples from', path)
if os.path.isdir(path):
imgs = sorted(os.listdir(path))
img_path = [os.path.join(path, i) for i in imgs]
img_path = [
i for i in img_path if '.pt' not in i and 'project' not in i
]
else:
img_path = [path]
proj_size_name = '' if self.image_size == 256 else '-{}'.format(
self.image_size)
projection = [
os.path.splitext(i)[0] + proj_size_name + '.pt' for i in img_path
]
# projection = [os.path.splitext(i)[0] + '-no_wplus.pt' for i in img_path]
projection = [i for i in projection if os.path.isfile(i)]
imgs = [Image.open(i).convert('RGB') for i in img_path]
imgs = [transforms.ToPILImage()(self.get_face(i)) for i in imgs]
imgs = [self.transform_rgb(i).unsqueeze(0) for i in imgs]
imgs = to_cuda(torch.cat(imgs, dim=0))
sem = self.img2seg(imgs)
sem = scatterMask(sem[:, 0])
imgs = (imgs - 0.5) * 2
if len(img_path) == len(projection) and self.sean.projection:
print('Using projection styles.')
style, noise = [], []
for idx, proj in enumerate(projection):
metaproj = torch.load(
proj, map_location=lambda storage, loc: storage)
# In case there is a missing style
if 'no_wplus' in proj:
metaproj['latent'] = metaproj['latent'].unsqueeze(0)
_style = self.sean.replace_w_with_seg(sem[idx].unsqueeze(0),
metaproj['latent'])
style.append(_style)
noise.append([to_cuda(i) for i in metaproj['noise']])
style = to_cuda(torch.stack(style, 0))
else:
print('WITHOUT projection styles.')
style = self.sean.model.extract_style(imgs, sem)
noise = None
if files:
return imgs, sem, style, noise, img_path
else:
return imgs, sem, style, noise
@torch.no_grad()
def manipulation_ref(self, string=TimeNow_str()):
last_name = self.resume_name()
save_folder = os.path.join(self.args.sample_path,
'{}_demo'.format(last_name))
# string = TimeNow_str()
save_folder = os.path.join(save_folder, string)
os.makedirs(save_folder, exist_ok=True)
self.nets_ema.G.eval()
self.nets_ema.F.eval()
self.nets_ema.S.eval()
self.PRINT('Demo files will be saved in "{}"..!'.format(save_folder))
video = []
n_styles = 3
seed_sean_style = [
random.randint(0, 100000) for i in range(n_styles + 1)
]
img_ref, sem_ref, sty_ref, noise_ref = self.get_sample_ref()
if self.args.REENACTMENT:
label = torch.ones((img_ref.size(0), 1)).to(img_ref.device)
else:
label = self.attnet(img_ref, one_hot=True)[-1]
label[11, 2] = 0
label[11, 3] = 1
label[5, 2] = 0
label[5, 3] = 1
if not (label.sum(1) == 6).all().item():
# only one image get fixed
idx = (label.sum(1) == 6).tolist().index(False)
# Gender confusion
label[idx, 1] = 1
style_ref_smile = self.nets_ema.S(sem_ref, label)
save_name = os.path.join(save_folder, 'out_ref')
os.makedirs(save_name, exist_ok=True)
for count, filename in tqdm(enumerate(self.rgb_demo),
total=len(self.rgb_demo)):
if not self.rgb_video:
img = self.read_img_from_file(filename,
self.transform_rgb,
norm=True).unsqueeze(0)
img_big = img
else:
img = filename
img = self.normalize(img).unsqueeze(0)
img_big = img.clone()
img = F.interpolate(img, (self.image_size, self.image_size),
mode='bilinear')
img_big = to_cuda(img_big)
img = to_cuda(img)
if self.args.FAN:
if self.args.REENACTMENT:
fan = self.nets_ema.FAN.get_heatmap(img_ref)
else:
fan = self.nets_ema.FAN.get_heatmap(img)
else:
fan = None
if self.run_bisenet:
img_big = denorm(img_big)
sem = self.img2seg(img_big)
else:
sem = self.read_img_from_file(
filename, self.transform_sem)[0].unsqueeze(0)
sem = to_cuda(sem)
output_seg = []
output_sean = []
sem_input = scatterMask(sem[:, 0])
if self.rgb_label is None:
if self.args.REENACTMENT:
label_org = torch.ones((img.size(0), 1)).to(img.device)
else:
label_org = self.attnet(img, one_hot=True)[1]
if not (label_org.sum(1) == 6).all().item():
# Gender confusion
label_org[0, 1] = 1
else:
label_org = self.rgb_label.unsqueeze(0).to(sem.device)
style_org_smile = self.nets_ema.S(sem_input, label_org)
_style_ref_smile = torch.cat((style_org_smile, style_ref_smile),
dim=0)
sem_input = sem_input.repeat(_style_ref_smile.size(0), 1, 1, 1)
if self.args.REENACTMENT:
fake_seg = self.nets_ema.G(sem_ref,
style_org_smile.repeat(
sem_ref.size(0), 1, 1),
fan=fan)
else:
fake_seg = self.nets_ema.G(sem_input,
_style_ref_smile,
fan=fan)
sean_input = scatterMask(label2mask_plain(fake_seg)[:, 0])
fake_seg = label2mask(fake_seg)
# Reconstruction
output_sean_ref = []
if not img_ref.size(0) == 16 and not self.args.REENACTMENT:
sean_random = self.sean.forward_from_tensor(
sean_input[0].unsqueeze(0),
rgb_guide=img,
sem_guide=sean_input[0].unsqueeze(0),
)
sean_i = label2mask(sean_input[0].unsqueeze(0),
n=sean_input[0].unsqueeze(0).size(1))
sean_random = scale_image(sean_random, sean_i, None, size=64)
output_sean_ref.append(sean_random)
if not self.args.REENACTMENT:
sean_input = sean_input[1:]
# Reference styles
for sean_i, img_r, sem_r, sty_r in zip(sean_input, img_ref,
sem_ref, sty_ref):
sean_i = sean_i.unsqueeze(0)
sty_r = sty_r.unsqueeze(0)
img_r = img_r.unsqueeze(0)
sem_r = sem_r.unsqueeze(0)
sean_random = self.sean.forward_from_tensor(
sean_i,
rgb=img,
rgb_guide=img_r,
sem_guide=sem_r,
style_ref=sty_r,
)
sean_i = label2mask(sean_i, n=sean_i.size(1))
sean_random = scale_image(sean_random, sean_i, None, size=64)
output_sean_ref.append(sean_random)
output_sean_ref = torch.cat(output_sean_ref, dim=-1)
_img_ref = scale_image(denorm(img_ref),
label2mask(sem_ref, n=sem_ref.size(1)),
None,
size=64)
_img_ref = torch.cat([i.unsqueeze(0) for i in _img_ref],
dim=-1).cpu()
if img_ref.size(0) == 16:
out1, out2 = torch.chunk(output_sean_ref, 2, dim=-1)
_img_ref1, _img_ref2 = torch.chunk(_img_ref, 2, dim=-1)
row1 = torch.cat([torch.ones_like(img).cpu(),
_img_ref1.cpu()],
dim=-1)
row2 = torch.cat([torch.ones_like(img).cpu(),
out1.cpu()],
dim=-1)
row3 = torch.cat([torch.ones_like(img).cpu(),
out2.cpu()],
dim=-1)
row4 = torch.cat([torch.ones_like(img).cpu(),
_img_ref2.cpu()],
dim=-1)
all_images_org = torch.cat([row1, row2, row3, row4], dim=-2)
_img = scale_image(denorm(img),
label2mask(scatterMask(sem[:, 0]),
n=sem_input.size(1)),
None,
size=64)
all_images_org[:, :,
img.size(-1) * 2 -
img.size(-1) // 2:img.size(-1) * 2 +
img.size(-1) // 2, :img.size(-1)] = _img.cpu()
save_name_rgb = os.path.join(save_name,
'%s.png' % (str(count).zfill(6)))
save_image(all_images_org, save_name_rgb, nrow=1, padding=0)
create_text(save_name_rgb,
'Reference Image',
size_text=img.size(-1) // 8,
rotate=90,
row=0,
column=0,
force_replace=True)
create_text(save_name_rgb,
'Reference Image',
size_text=img.size(-1) // 8,
rotate=90,
row=3,
column=0,
force_replace=True)
create_text(save_name_rgb,
'Input Video',
size_text=img.size(-1) // 8,
rotate=0,
row=0.5,
column=0,
force_replace=True)
else:
_img_ref = torch.cat([i.unsqueeze(0) for i in img_ref],
dim=-1).cpu()
_img_ref = torch.cat([denorm(img), _img_ref], dim=-1)
output_seg = torch.cat([i.unsqueeze(0) for i in fake_seg],
dim=-1).cpu()
row1 = torch.cat([torch.ones_like(img).cpu(),
_img_ref.cpu()],
dim=-1)
row2 = torch.cat([denorm(img).cpu(),
output_sean_ref.cpu()],
dim=-1)
all_images_org = torch.cat([row1, row2], dim=-2)
save_name_rgb = os.path.join(save_name,
'%s.png' % (str(count).zfill(6)))
save_image(all_images_org, save_name_rgb, nrow=1, padding=0)
create_text(save_name_rgb,
'Reference Image',
size_text=img.size(-1) // 8,
rotate=90,
row=0,
column=0,
force_replace=True)
create_text(save_name_rgb,
'Input Video',
size_text=img.size(-1) // 8,
rotate=0,
row=0,
column=0,
force_replace=True)
# break
# if count == 4:
# break
if len(os.listdir(save_name)) > 1:
imgs = Glob(save_name)
imgs = [np.array(Image.open(i)) for i in imgs]
imgs = np.stack(imgs, axis=0)
save_name_video = os.path.join(save_folder, 'out_ref.mp4')
SaveVideo(save_name_video,
imgs,
output_fps=15,
vcodec='libx264',
filters='')
# ffmpeg_str = "ffmpeg -r 15 -i {}/%06d.png -vcodec libx264 -y {} -hide_banner"
# save_name_video = os.path.join(save_folder, 'out_ref.mp4')
# os.system(ffmpeg_str.format(save_name, save_name_video))
# ==================================================================#
# ==================================================================#
@torch.no_grad()
def __call__(self):
string = TimeNow_str()
self.manipulation_ref(string=string)
def read_img_from_file(self, filename, transform, norm=False):
img = Image.open(filename).convert('RGB')
img = self.get_face(img)
if norm:
img = self.normalize(img)
return img
@torch.no_grad()
def img2seg(self, tensor, color=True):
if not hasattr(self, 'seg_model'):
self.init_seg()
assert tensor.min() >= 0 and tensor.max() <= 1
tensor = F.interpolate(tensor, (512, 512), mode='bilinear')
tensor = [self.bisenet_transform(t).unsqueeze(0) for t in tensor]
tensor = torch.cat(tensor, dim=0)
seg = self.seg_model(tensor)[0]
seg = F.interpolate(seg, (self.image_size, self.image_size),
mode='bilinear')
parsing = torch.argmax(seg, dim=1, keepdims=True)
parsing = bisenet2sean(parsing)
return parsing
def get_color_sem(self, rgb, seg):
seg_numpy = seg.cpu().numpy()
rgb_numpy = rgb.cpu().numpy().transpose(1, 3)
sem_color = []
mix_color = []
for image, parsing in zip(rgb_numpy, seg_numpy):
color_sem, mix_sem = vis_parsing_maps(image, parsing, stride=1)
sem_color.append(color_sem)
mix_color.append(mix_sem)
sem_color = np.array(sem_color).transpose(1, 3)
mix_color = np.array(mix_color).transpose(1, 3)
return rgb_numpy, seg_numpy, sem_color, mix_color
def read_video(self, video_file):
# Please only read rgb video files,
# Semantic videos are normally pixel-wisely corrupted
vid_frames, _, metadata = io.read_video(video_file)
vid_frames = vid_frames.transpose(1, 3).transpose(2, 3) / 255.
vid_frames = vid_frames[::5, :, 400:-100, 70:-100]
return vid_frames, metadata
def save_video(self, dirname, dict): # rgb=None, sem=None):
assert 'rgb' in dict.keys() or 'sem' in dict.keys()
for key, value in dict.items():
_dirname = dirname + '_' + key
os.makedirs(_dirname, exist_ok=True)
for i, frame in enumerate(value):
Image.fromarray(frame).save(
os.path.join(_dirname, '{}.png'.format(str(i).zfill(4))))
# python main.py --batch_size=8 --GPU=3 --FAN --ATTR=Gender --TRAIN_MASK
# --STYLE_SEMANTICS --ORG_DS --mode=demo --rgb_demo out1.mp4 --MOD
# python main.py --batch_size=4 --GPU=NO_CUDA --FAN --EYEGLASSES --GENDER --EARRINGS --HAT --ORG_DS --TRAIN_MASK --STYLE_SEMANTICS --lambda_ds=20 --MOD --SPLIT_STYLE --mode=demo --rgb_demo out1.mp4
# python main.py --batch_size=4 --GPU=NO_CUDA --FAN --EYEGLASSES --GENDER
# --HAT --ORG_DS --TRAIN_MASK --STYLE_SEMANTICS --lambda_ds=10 --MOD
# --SPLIT_STYLE --mode=demo --rgb_demo out2.mp4 --rgb_label 1,0,0,0
# REENACTMENT
# python main.py --batch_size=4 --GPU=NO_CUDA --image_size=512 --FAN
# --REENACTMENT --ORG_DS --TRAIN_MASK --STYLE_SEMANTICS --lambda_ds=20
# --MOD --mode=demo --rgb_demo Figures/out3.mp4 --ref_demo
# Figures/ffhq_sample --ATTR single
# python main.py --batch_size=4 --GPU=NO_CUDA --FAN --EYEGLASSES --GENDER
# --HAT --EARRINGS --HAIR --BANGS --ORG_DS --TRAIN_MASK --STYLE_SEMANTICS
# --lambda_ds=20 --MOD --SPLIT_STYLE
# python main.py --batch_size=4 --GPU=NO_CUDA --FAN --EYEGLASSES --GENDER
# --EARRINGS --HAT --BANGS --HAIR --ORG_DS --TRAIN_MASK --STYLE_SEMANTICS
# --lambda_ds=20 --MOD --SPLIT_STYLE --mode=demo --ref_demo
# Figures/ffhq_teaser --rgb_demo Figures/teaser_input.png