forked from dusty-nv/jetson-containers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
82 lines (56 loc) · 1.99 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#!/usr/bin/env python3
print('testing PyTorch...')
import torch
print('PyTorch version: ' + str(torch.__version__))
print('CUDA available: ' + str(torch.cuda.is_available()))
print('cuDNN version: ' + str(torch.backends.cudnn.version()))
print(torch.__config__.show())
# fail if CUDA isn't available
assert(torch.cuda.is_available())
# check that version can be parsed
from packaging import version
from os import environ
print('PACKAGING_VERSION=' + str(version.parse(torch.__version__)))
print('TORCH_CUDA_ARCH_LIST=' + environ.get('TORCH_CUDA_ARCH_LIST', 'None') + '\n')
# quick cuda tensor test
a = torch.cuda.FloatTensor(2).zero_()
print('Tensor a = ' + str(a))
b = torch.randn(2).cuda()
print('Tensor b = ' + str(b))
c = a + b
print('Tensor c = ' + str(c))
# LAPACK test
print('testing LAPACK (OpenBLAS)...')
a = torch.randn(2, 3, 1, 4, 4)
b = torch.randn(2, 3, 1, 4, 4)
x, lu = torch.linalg.solve(b, a)
print('done testing LAPACK (OpenBLAS)')
# torch.nn test
print('testing torch.nn (cuDNN)...')
import torch.nn
model = torch.nn.Conv2d(3,3,3)
data = torch.zeros(1,3,10,10)
model = model.cuda()
data = data.cuda()
out = model(data)
#print(out)
print('done testing torch.nn (cuDNN)')
# CPU test (https://github.com/pytorch/pytorch/issues/47098)
print('testing CPU tensor vector operations...')
import torch.nn.functional as F
cpu_x = torch.tensor([12.345])
cpu_y = F.softmax(cpu_x)
print('Tensor cpu_x = ' + str(cpu_x))
print('Tensor softmax = ' + str(cpu_y))
if cpu_y != 1.0:
raise ValueError('PyTorch CPU tensor vector test failed (softmax)\n')
# https://github.com/pytorch/pytorch/issues/61110
t_32 = torch.ones((3,3), dtype=torch.float32).exp()
t_64 = torch.ones((3,3), dtype=torch.float64).exp()
diff = (t_32 - t_64).abs().sum().item()
print('Tensor exp (float32) = ' + str(t_32))
print('Tensor exp (float64) = ' + str(t_64))
print('Tensor exp (diff) = ' + str(diff))
if diff > 0.1:
raise ValueError(f'PyTorch CPU tensor vector test failed (exp, diff={diff})')
print('PyTorch OK\n')