-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsrc_ed_2d_bhm2c_lgt_conf.m
209 lines (161 loc) · 4.54 KB
/
src_ed_2d_bhm2c_lgt_conf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
% a example code of 2d two-component Bose-Hubbard model.
%
%
% Notes:
% |<- Lx ->|
% --- 01 02 03 04 05 06
% | 07 08 09 10 11 12
% Ly 13 ... 18
% | 19 ... 24
% --- 25 ... 30
%
%
close all
clc
addpath(genpath('libs'))
%% initial state
L = 26;
Lx = 13;
Ly = 2;
st_init_up = zeros(Ly,Lx);
st_init_dn = [0 0 1 0 1 0 1 0 1 0 1 0 0;...
0 0 0 0 0 0 0 0 0 0 0 0 0];
if (sum(size(st_init_up) == [Ly,Lx]) ~= 2) ...
|| (sum(size(st_init_dn) == [Ly,Lx]) ~= 2)
error('Error! Invalid input parameters!')
end
%
N_up = sum(st_init_up(:));
N_dn = sum(st_init_dn(:));
% the maximum occupation number of up/dn state in each lattice site
nMax = 3;
%% Hubbard parameters
J = 55.0 * 2 * pi;
U = 780.0 * 2 * pi;
%
U_uu = U; % U_up_up
U_dd = U; % U_dn_dn
U_ud = U; % U_up_dn
Jx_up = J * ones(1,Lx-1);
Jx_dn = J * ones(1,Lx-1);
Jy_up = 0;
Jy_dn = 0;
% staggered potential
% staG0 = 0.5 * U + 0.0 * J;
% mu_up = 0.0*2*pi*(1:Lx) + mod(1:Lx,2)*staG0;
% mu_dn = 60.0*2*pi*(1:Lx) + mod(1:Lx,2)*staG0;
% mu_up = repmat(mu_up,Ly,1);
% mu_dn = repmat(mu_dn,Ly,1);
% boundary conditions
% 'obc' - open boundary condition
% 'pbc' - periodic case
BDCx = 'obc'; % x-direction
BDCy = 'obc'; % y-direction
% BDCx = 'pbc'; % x-direction
% BDCy = 'pbc'; % y-direction
%% evolve time sequence
nt = 101;
T1 = 100 * 1e-03; % 100 ms
tl1 = linspace(0,T1,nt);
dt1 = tl1(2) - tl1(1);
T2 = 100 * 1e-03; % 100 ms
tl2 = linspace(0,T2,nt);
dt2 = tl2(2) - tl2(1);
tl = [tl1,tl2(2:end)];
%%
% staggered potential
staG_lt = 0.5 * U + linspace(-5,1,nt) * J;
mu_up = 0.0*2*pi*(1:Lx) + mod(1:Lx,2)*staG_lt(1);
mu_dn = 60.0*2*pi*(1:Lx) + mod(1:Lx,2)*staG_lt(1);
mu_up = repmat(mu_up,Ly,1);
mu_dn = repmat(mu_dn,Ly,1);
%% basis generate
fprintf('generating basis.\n')
tBase = tic;
basis = boson_basis_2d_spinor(L,Lx,Ly,N_up,N_dn,nMax);
tD_base = toc(tBase);
fprintf('elapsed time is %.6f seconds.\n',tD_base)
ns = basis.n_bs;
fprintf('total basis number is %d.\n',ns)
%% state index search
idx_init_st = state_index_2d_indicate(st_init_up,st_init_dn,basis);
% basis.state_up(idx_init_st,:)
% basis.state_dn(idx_init_st,:)
phi_init = zeros(ns,1);
phi_init(idx_init_st) = 1;
%% hamiltonian elements generate
fprintf('\ngenerating hamiltonian elements.\n')
tStart = tic;
ham_elems = hamiltonian_2d_bhm2c_elements(basis,BDCx,BDCy);
tEnd = toc(tStart);
fprintf('total elapsed time is %.6f seconds.\n',tEnd)
fprintf('\ngenerating the hamiltonian.\n')
tStart = tic;
ham_cur = hamiltonian_2d_bhm2c(basis,ham_elems,Jx_up,Jx_dn,...
Jy_up,Jy_dn,U_uu,U_dd,U_ud,mu_up,mu_dn);
tEnd = toc(tStart);
fprintf('elapsed time is %.6f seconds.\n',tEnd)
ham = ham_cur.ham;
fprintf('number of nonzero hamiltonian elements: %d.\n',nnz(ham))
%% ground state
k = 3;
[V,D] = eigs(ham,k,'sr'); % find k smallest real eigenvectors and eigenvalues
psi_gs = V(:,1);
energy_gs = D(1,1);
probl_gs = psi_gs .* conj(psi_gs);
figure('Color','w')
plot(probl_gs)
xlim([1,ns])
ax = gca;
ax.FontSize = 14;
xlabel('Basis number','FontSize',16)
ylabel('Probabilility','FontSize',16)
%% evolution
density_up_Mt = [];
density_dn_Mt = [];
psic = phi_init;
probl = abs(conj(psic).*psic);
tic
stat_nC = occupation_statistics_1d_bhm2C_Fcn(psic,basis);
toc
density_up_Mt = cat(1,density_up_Mt,stat_nC.density_up_ltC);
density_dn_Mt = cat(1,density_dn_Mt,stat_nC.density_dn_ltC);
%
tStart = tic;
for kk = 2:nt
fprintf('Current process: %04d / %04d.\n',kk,nt)
staGC = staG_lt(kk);
mu_up = 0.0*2*pi*(1:Lx) + mod(1:Lx,2)*staGC;
mu_dn = 60.0*2*pi*(1:Lx) + mod(1:Lx,2)*staGC;
mu_up = repmat(mu_up,Ly,1);
mu_dn = repmat(mu_dn,Ly,1);
ham_cur = hamiltonian_2d_bhm2c(basis,ham_elems,Jx_up,Jx_dn,...
Jy_up,Jy_dn,U_uu,U_dd,U_ud,mu_up,mu_dn);
ham = ham_cur.ham;
tSC = tic;
psic = expv(-1i*dt1,ham,psic,1e-7,30);
tEC = toc(tSC);
fprintf('time for evolution: %.6f seconds.\n',tEC)
stat_nC = occupation_statistics_1d_bhm2C_Fcn(psic,basis);
density_up_Mt = cat(1,density_up_Mt,stat_nC.density_up_ltC);
density_dn_Mt = cat(1,density_dn_Mt,stat_nC.density_dn_ltC);
% fprintf('\n')
end
tEnd = toc(tStart);
fprintf('\nElapsed time is %.6f seconds.\n',tEnd)
%%
x = 1:L;
y = tl1*1000;
figure('Color','w')
imagesc(x,y,density_up_Mt)
figure('Color','w')
imagesc(x,y,density_dn_Mt)
%%
% psi2 = psic;
Jx_up_n2 = 0;
Jx_dn_n2 = 0;
Jy_up_n2 = J;
Jy_dn_n2 = J;
ham_cur = hamiltonian_2d_bhm2c(basis,ham_elems,Jx_up_n2,Jx_dn_n2,...
Jy_up_n2,Jy_dn_n2,U_uu,U_dd,U_ud,mu_up,mu_dn)
nnz(ham_cur.ham)