-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathevaluate.py
1701 lines (1657 loc) · 43.5 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import json
import numpy as np
import re
def evaluate(test_annotation_file, user_annotation_file, phase_codename, **kwargs):
"""
DialoGLUE evaluation function for eval.ai
See documentation: https://evalai.readthedocs.io/en/latest/evaluation_scripts.html
See test_annotation_file: gt_test.json
The same annotation file and function will be used regardless of mode (e.g., full data, few shot, few shot + unlabeled)
"""
gt_outputs = json.load(open(test_annotation_file))
gen_outputs = json.load(open(user_annotation_file))
# Iterate over the tasks/datasets
dataset_to_task = {
"hwu": "intent",
"clinc": "intent",
"banking": "intent",
"restaurant8k": "slot",
"dstc8": "slot",
"multiwoz": "dst",
"top": "top",
}
assert len(gen_outputs.keys()) == 7
assert all(key in gen_outputs for key in dataset_to_task.keys())
results = {}
for dataset, gt_outputs in gt_outputs.items():
# Calculate score differently depending on the dataset/task
task = dataset_to_task[dataset]
if phase_codename == "few":
dataset_results = []
for i in range(5):
# Accuracy and exact match for intent classification & TOP
if task == "intent" or task == "top":
# Calculate accuracy between generated and ground-truth
dataset_results.append(sum(p == t for p,t in zip(gen_outputs.get(dataset)[i], gt_outputs))/len(gt_outputs))
elif task == "slot":
dataset_results.append(evaluate_slot(gen_outputs.get(dataset)[i], gt_outputs))
elif task == "dst":
dataset_results.append(evaluate_mwoz(gen_outputs.get(dataset)[i]))
results[dataset] = np.mean(dataset_results)
else:
# Accuracy and exact match for intent classification & TOP
if task == "intent" or task == "top":
# Calculate accuracy between generated and ground-truth
results[dataset] = sum(p == t for p,t in zip(gen_outputs.get(dataset), gt_outputs))/len(gt_outputs)
elif task == "slot":
results[dataset] = evaluate_slot(gen_outputs.get(dataset), gt_outputs)
elif task == "dst":
results[dataset] = evaluate_mwoz(gen_outputs.get(dataset))
rename = {
"hwu": "HWU64 (Acc)",
"clinc": "CLINC150 (Acc)",
"banking": "Banking77 (Acc)",
"restaurant8k": "Restaurant8k (F-1)",
"dstc8": "DSTC8 (F-1)",
"top": "TOP (EM)",
"multiwoz": "MultiWOZ (Joint Goal Acc)",
}
results = {
rename.get(key): value*100 for key,value in results.items()
}
# Add average
results["Average"] = np.mean(list(results.values()))
labels = ["Average", "Banking77 (Acc)", "CLINC150 (Acc)", "HWU64 (Acc)", "Restaurant8k (F-1)", "DSTC8 (F-1)", "TOP (EM)", "MultiWOZ (Joint Goal Acc)"]
output = {"result": [{"test_split": results}], "submission_result": [results.get(e) for e in labels]}
print(output)
return output
def evaluate_slot(pred_slots, true_slots):
slot_types = set([slot.split(":")[0] for row in true_slots for slot in row])
slot_type_f1_scores = []
for slot_type in slot_types:
predictions_for_slot = [
[p for p in prediction if slot_type in p] for prediction in pred_slots
]
labels_for_slot = [
[l for l in label if slot_type in l] for label in true_slots
]
proposal_made = [len(p) > 0 for p in predictions_for_slot]
has_label = [len(l) > 0 for l in labels_for_slot]
prediction_correct = [
prediction == label for prediction, label in zip(predictions_for_slot, labels_for_slot)
]
true_positives = sum([
int(proposed and correct)
for proposed, correct in zip(proposal_made, prediction_correct)
])
num_predicted = sum([int(proposed) for proposed in proposal_made])
num_to_recall = sum([int(hl) for hl in has_label])
precision = true_positives / (1e-5 + num_predicted)
recall = true_positives / (1e-5 + num_to_recall)
f1_score = 2 * precision * recall / (1e-5 + precision + recall)
slot_type_f1_scores.append(f1_score)
return np.mean(slot_type_f1_scores)
def load_dataset_config(dataset_config):
raw_config = dataset_config
return raw_config['class_types'], raw_config['slots'], raw_config['label_maps']
def tokenize(text):
if "\u0120" in text:
text = re.sub(" ", "", text)
text = re.sub("\u0120", " ", text)
text = text.strip()
return ' '.join([tok for tok in map(str.strip, re.split("(\W+)", text)) if len(tok) > 0])
def is_in_list(tok, value):
found = False
tok_list = [item for item in map(str.strip, re.split("(\W+)", tok)) if len(item) > 0]
value_list = [item for item in map(str.strip, re.split("(\W+)", value)) if len(item) > 0]
tok_len = len(tok_list)
value_len = len(value_list)
for i in range(tok_len + 1 - value_len):
if tok_list[i:i + value_len] == value_list:
found = True
break
return found
def check_slot_inform(value_label, inform_label, label_maps):
value = inform_label
if value_label == inform_label:
value = value_label
elif is_in_list(inform_label, value_label):
value = value_label
elif is_in_list(value_label, inform_label):
value = value_label
elif inform_label in label_maps:
for inform_label_variant in label_maps[inform_label]:
if value_label == inform_label_variant:
value = value_label
break
elif is_in_list(inform_label_variant, value_label):
value = value_label
break
elif is_in_list(value_label, inform_label_variant):
value = value_label
break
elif value_label in label_maps:
for value_label_variant in label_maps[value_label]:
if value_label_variant == inform_label:
value = value_label
break
elif is_in_list(inform_label, value_label_variant):
value = value_label
break
elif is_in_list(value_label_variant, inform_label):
value = value_label
break
return value
def get_joint_slot_correctness(preds, class_types, label_maps,
key_class_label_id='class_label_id',
key_class_prediction='class_prediction',
key_start_pos='start_pos',
key_start_prediction='start_prediction',
key_end_pos='end_pos',
key_end_prediction='end_prediction',
key_refer_id='refer_id',
key_refer_prediction='refer_prediction',
key_slot_groundtruth='slot_groundtruth',
key_slot_prediction='slot_prediction'):
class_correctness = [[] for cl in range(len(class_types) + 1)]
confusion_matrix = [[[] for cl_b in range(len(class_types))] for cl_a in range(len(class_types))]
pos_correctness = []
refer_correctness = []
val_correctness = []
total_correctness = []
c_tp = {ct: 0 for ct in range(len(class_types))}
c_tn = {ct: 0 for ct in range(len(class_types))}
c_fp = {ct: 0 for ct in range(len(class_types))}
c_fn = {ct: 0 for ct in range(len(class_types))}
for pred in preds:
guid = pred['guid'] # List: set_type, dialogue_idx, turn_idx
turn_gt_class = pred[key_class_label_id]
turn_pd_class = pred[key_class_prediction]
gt_start_pos = pred[key_start_pos]
pd_start_pos = pred[key_start_prediction]
gt_end_pos = pred[key_end_pos]
pd_end_pos = pred[key_end_prediction]
gt_refer = pred[key_refer_id]
pd_refer = pred[key_refer_prediction]
gt_slot = pred[key_slot_groundtruth]
pd_slot = pred[key_slot_prediction]
gt_slot = tokenize(gt_slot)
pd_slot = tokenize(pd_slot)
# Make sure the true turn labels are contained in the prediction json file!
joint_gt_slot = gt_slot
if guid[-1] == '0': # First turn, reset the slots
joint_pd_slot = 'none'
# If turn_pd_class or a value to be copied is "none", do not update the dialog state.
if turn_pd_class == class_types.index('none'):
pass
elif turn_pd_class == class_types.index('dontcare'):
joint_pd_slot = 'dontcare'
elif turn_pd_class == class_types.index('copy_value'):
joint_pd_slot = pd_slot
elif 'true' in class_types and turn_pd_class == class_types.index('true'):
joint_pd_slot = 'true'
elif 'false' in class_types and turn_pd_class == class_types.index('false'):
joint_pd_slot = 'false'
elif 'refer' in class_types and turn_pd_class == class_types.index('refer'):
if pd_slot[0:3] == "§§ ":
if pd_slot[3:] != 'none':
joint_pd_slot = check_slot_inform(joint_gt_slot, pd_slot[3:], label_maps)
elif pd_slot[0:2] == "§§":
if pd_slot[2:] != 'none':
joint_pd_slot = check_slot_inform(joint_gt_slot, pd_slot[2:], label_maps)
elif pd_slot != 'none':
joint_pd_slot = pd_slot
elif 'inform' in class_types and turn_pd_class == class_types.index('inform'):
if pd_slot[0:3] == "§§ ":
if pd_slot[3:] != 'none':
joint_pd_slot = check_slot_inform(joint_gt_slot, pd_slot[3:], label_maps)
elif pd_slot[0:2] == "§§":
if pd_slot[2:] != 'none':
joint_pd_slot = check_slot_inform(joint_gt_slot, pd_slot[2:], label_maps)
else:
print("ERROR: Unexpected slot value format. Aborting.")
exit()
else:
print("ERROR: Unexpected class_type. Aborting.")
exit()
total_correct = True
# Check the per turn correctness of the class_type prediction
if turn_gt_class == turn_pd_class:
class_correctness[turn_gt_class].append(1.0)
class_correctness[-1].append(1.0)
c_tp[turn_gt_class] += 1
# Only where there is a span, we check its per turn correctness
if turn_gt_class == class_types.index('copy_value'):
if gt_start_pos == pd_start_pos and gt_end_pos == pd_end_pos:
pos_correctness.append(1.0)
else:
pos_correctness.append(0.0)
# Only where there is a referral, we check its per turn correctness
if 'refer' in class_types and turn_gt_class == class_types.index('refer'):
if gt_refer == pd_refer:
refer_correctness.append(1.0)
else:
refer_correctness.append(0.0)
else:
if turn_gt_class == class_types.index('copy_value'):
pos_correctness.append(0.0)
if 'refer' in class_types and turn_gt_class == class_types.index('refer'):
refer_correctness.append(0.0)
class_correctness[turn_gt_class].append(0.0)
class_correctness[-1].append(0.0)
confusion_matrix[turn_gt_class][turn_pd_class].append(1.0)
c_fn[turn_gt_class] += 1
c_fp[turn_pd_class] += 1
for cc in range(len(class_types)):
if cc != turn_gt_class and cc != turn_pd_class:
c_tn[cc] += 1
# Check the joint slot correctness.
# If the value label is not none, then we need to have a value prediction.
# Even if the class_type is 'none', there can still be a value label,
# it might just not be pointable in the current turn. It might however
# be referrable and thus predicted correctly.
if joint_gt_slot == joint_pd_slot:
val_correctness.append(1.0)
elif joint_gt_slot != 'none' and joint_gt_slot != 'dontcare' and joint_gt_slot != 'true' and joint_gt_slot != 'false' and joint_gt_slot in label_maps:
no_match = True
for variant in label_maps[joint_gt_slot]:
if variant == joint_pd_slot:
no_match = False
break
if no_match:
val_correctness.append(0.0)
total_correct = False
else:
val_correctness.append(1.0)
else:
val_correctness.append(0.0)
total_correct = False
total_correctness.append(1.0 if total_correct else 0.0)
# Account for empty lists (due to no instances of spans or referrals being seen)
if pos_correctness == []:
pos_correctness.append(1.0)
if refer_correctness == []:
refer_correctness.append(1.0)
for ct in range(len(class_types)):
if c_tp[ct] + c_fp[ct] > 0:
precision = c_tp[ct] / (c_tp[ct] + c_fp[ct])
else:
precision = 1.0
if c_tp[ct] + c_fn[ct] > 0:
recall = c_tp[ct] / (c_tp[ct] + c_fn[ct])
else:
recall = 1.0
if precision + recall > 0:
f1 = 2 * ((precision * recall) / (precision + recall))
else:
f1 = 1.0
if c_tp[ct] + c_tn[ct] + c_fp[ct] + c_fn[ct] > 0:
acc = (c_tp[ct] + c_tn[ct]) / (c_tp[ct] + c_tn[ct] + c_fp[ct] + c_fn[ct])
else:
acc = 1.0
return np.asarray(total_correctness), np.asarray(val_correctness), np.asarray(class_correctness), np.asarray(pos_correctness), np.asarray(refer_correctness), np.asarray(confusion_matrix), c_tp, c_tn, c_fp, c_fn
def evaluate_mwoz(preds):
acc_list = []
key_class_label_id = 'class_label_id_%s'
key_class_prediction = 'class_prediction_%s'
key_start_pos = 'start_pos_%s'
key_start_prediction = 'start_prediction_%s'
key_end_pos = 'end_pos_%s'
key_end_prediction = 'end_prediction_%s'
key_refer_id = 'refer_id_%s'
key_refer_prediction = 'refer_prediction_%s'
key_slot_groundtruth = 'slot_groundtruth_%s'
key_slot_prediction = 'slot_prediction_%s'
dataset_config = mwoz_config
class_types, slots, label_maps = load_dataset_config(dataset_config)
# Prepare label_maps
label_maps_tmp = {}
for v in label_maps:
label_maps_tmp[tokenize(v)] = [tokenize(nv) for nv in label_maps[v]]
label_maps = label_maps_tmp
goal_correctness = 1.0
cls_acc = [[] for cl in range(len(class_types))]
cls_conf = [[[] for cl_b in range(len(class_types))] for cl_a in range(len(class_types))]
c_tp = {ct: 0 for ct in range(len(class_types))}
c_tn = {ct: 0 for ct in range(len(class_types))}
c_fp = {ct: 0 for ct in range(len(class_types))}
c_fn = {ct: 0 for ct in range(len(class_types))}
for slot in slots:
tot_cor, joint_val_cor, cls_cor, pos_cor, ref_cor, conf_mat, ctp, ctn, cfp, cfn = get_joint_slot_correctness(preds, class_types, label_maps,
key_class_label_id=(key_class_label_id % slot),
key_class_prediction=(key_class_prediction % slot),
key_start_pos=(key_start_pos % slot),
key_start_prediction=(key_start_prediction % slot),
key_end_pos=(key_end_pos % slot),
key_end_prediction=(key_end_prediction % slot),
key_refer_id=(key_refer_id % slot),
key_refer_prediction=(key_refer_prediction % slot),
key_slot_groundtruth=(key_slot_groundtruth % slot),
key_slot_prediction=(key_slot_prediction % slot)
)
goal_correctness *= tot_cor
for cl_a in range(len(class_types)):
cls_acc[cl_a] += cls_cor[cl_a]
for cl_b in range(len(class_types)):
cls_conf[cl_a][cl_b] += list(conf_mat[cl_a][cl_b])
c_tp[cl_a] += ctp[cl_a]
c_tn[cl_a] += ctn[cl_a]
c_fp[cl_a] += cfp[cl_a]
c_fn[cl_a] += cfn[cl_a]
for ct in range(len(class_types)):
if c_tp[ct] + c_fp[ct] > 0:
precision = c_tp[ct] / (c_tp[ct] + c_fp[ct])
else:
precision = 1.0
if c_tp[ct] + c_fn[ct] > 0:
recall = c_tp[ct] / (c_tp[ct] + c_fn[ct])
else:
recall = 1.0
if precision + recall > 0:
f1 = 2 * ((precision * recall) / (precision + recall))
else:
f1 = 1.0
if c_tp[ct] + c_tn[ct] + c_fp[ct] + c_fn[ct] > 0:
acc = (c_tp[ct] + c_tn[ct]) / (c_tp[ct] + c_tn[ct] + c_fp[ct] + c_fn[ct])
else:
acc = 1.0
acc = np.mean(goal_correctness)
return acc
# MWOZ CONFIG
mwoz_config = {
"class_types": [
"none",
"dontcare",
"copy_value",
"true",
"false",
"refer",
"inform"
],
"slots": [
"taxi-leaveAt",
"taxi-destination",
"taxi-departure",
"taxi-arriveBy",
"restaurant-book_people",
"restaurant-book_day",
"restaurant-book_time",
"restaurant-food",
"restaurant-pricerange",
"restaurant-name",
"restaurant-area",
"hotel-book_people",
"hotel-book_day",
"hotel-book_stay",
"hotel-name",
"hotel-area",
"hotel-parking",
"hotel-pricerange",
"hotel-stars",
"hotel-internet",
"hotel-type",
"attraction-type",
"attraction-name",
"attraction-area",
"train-book_people",
"train-leaveAt",
"train-destination",
"train-day",
"train-arriveBy",
"train-departure"
],
"label_maps": {
"guest house": [
"guest houses"
],
"hotel": [
"hotels"
],
"centre": [
"center",
"downtown"
],
"north": [
"northern",
"northside",
"northend"
],
"east": [
"eastern",
"eastside",
"eastend"
],
"west": [
"western",
"westside",
"westend"
],
"south": [
"southern",
"southside",
"southend"
],
"cheap": [
"inexpensive",
"lower price",
"lower range",
"cheaply",
"cheaper",
"cheapest",
"very affordable"
],
"moderate": [
"moderately",
"reasonable",
"reasonably",
"affordable",
"mid range",
"mid-range",
"priced moderately",
"decently priced",
"mid price",
"mid-price",
"mid priced",
"mid-priced",
"middle price",
"medium price",
"medium priced",
"not too expensive",
"not too cheap"
],
"expensive": [
"high end",
"high-end",
"high class",
"high-class",
"high scale",
"high-scale",
"high price",
"high priced",
"higher price",
"fancy",
"upscale",
"nice",
"expensively",
"luxury"
],
"0": [
"zero"
],
"1": [
"one",
"just me",
"for me",
"myself",
"alone",
"me"
],
"2": [
"two"
],
"3": [
"three"
],
"4": [
"four"
],
"5": [
"five"
],
"6": [
"six"
],
"7": [
"seven"
],
"8": [
"eight"
],
"9": [
"nine"
],
"10": [
"ten"
],
"11": [
"eleven"
],
"12": [
"twelve"
],
"architecture": [
"architectural",
"architecturally",
"architect"
],
"boat": [
"boating",
"boats",
"camboats"
],
"boating": [
"boat",
"boats",
"camboats"
],
"camboats": [
"boating",
"boat",
"boats"
],
"cinema": [
"cinemas",
"movie",
"films",
"film"
],
"college": [
"colleges"
],
"concert": [
"concert hall",
"concert halls",
"concerthall",
"concerthalls",
"concerts"
],
"concerthall": [
"concert hall",
"concert halls",
"concerthalls",
"concerts",
"concert"
],
"entertainment": [
"entertaining"
],
"gallery": [
"museum"
],
"gastropubs": [
"gastropub"
],
"multiple sports": [
"multiple sport",
"multi sport",
"multi sports",
"sports",
"sporting"
],
"museum": [
"museums",
"gallery",
"galleries"
],
"night club": [
"night clubs",
"nightclub",
"nightclubs",
"club",
"clubs"
],
"park": [
"parks"
],
"pool": [
"swimming pool",
"swimming",
"pools",
"swimmingpool",
"water",
"swim"
],
"sports": [
"multiple sport",
"multi sport",
"multi sports",
"multiple sports",
"sporting"
],
"swimming pool": [
"swimming",
"pool",
"pools",
"swimmingpool",
"water",
"swim"
],
"theater": [
"theatre",
"theatres",
"theaters"
],
"theatre": [
"theater",
"theatres",
"theaters"
],
"abbey pool and astroturf pitch": [
"abbey pool and astroturf",
"abbey pool"
],
"abbey pool and astroturf": [
"abbey pool and astroturf pitch",
"abbey pool"
],
"abbey pool": [
"abbey pool and astroturf pitch",
"abbey pool and astroturf"
],
"adc theatre": [
"adc theater",
"adc"
],
"adc": [
"adc theatre",
"adc theater"
],
"addenbrookes hospital": [
"addenbrooke's hospital"
],
"cafe jello gallery": [
"cafe jello"
],
"cambridge and county folk museum": [
"cambridge and country folk museum",
"county folk museum"
],
"cambridge and country folk museum": [
"cambridge and county folk museum",
"county folk museum"
],
"county folk museum": [
"cambridge and county folk museum",
"cambridge and country folk museum"
],
"cambridge arts theatre": [
"cambridge arts theater"
],
"cambridge book and print gallery": [
"book and print gallery"
],
"cambridge contemporary art": [
"cambridge contemporary art museum",
"contemporary art museum"
],
"cambridge contemporary art museum": [
"cambridge contemporary art",
"contemporary art museum"
],
"cambridge corn exchange": [
"the cambridge corn exchange"
],
"the cambridge corn exchange": [
"cambridge corn exchange"
],
"cambridge museum of technology": [
"museum of technology"
],
"cambridge punter": [
"the cambridge punter",
"cambridge punters"
],
"cambridge punters": [
"the cambridge punter",
"cambridge punter"
],
"the cambridge punter": [
"cambridge punter",
"cambridge punters"
],
"cambridge university botanic gardens": [
"cambridge university botanical gardens",
"cambridge university botanical garden",
"cambridge university botanic garden",
"cambridge botanic gardens",
"cambridge botanical gardens",
"cambridge botanic garden",
"cambridge botanical garden",
"botanic gardens",
"botanical gardens",
"botanic garden",
"botanical garden"
],
"cambridge botanic gardens": [
"cambridge university botanic gardens",
"cambridge university botanical gardens",
"cambridge university botanical garden",
"cambridge university botanic garden",
"cambridge botanical gardens",
"cambridge botanic garden",
"cambridge botanical garden",
"botanic gardens",
"botanical gardens",
"botanic garden",
"botanical garden"
],
"botanic gardens": [
"cambridge university botanic gardens",
"cambridge university botanical gardens",
"cambridge university botanical garden",
"cambridge university botanic garden",
"cambridge botanic gardens",
"cambridge botanical gardens",
"cambridge botanic garden",
"cambridge botanical garden",
"botanical gardens",
"botanic garden",
"botanical garden"
],
"cherry hinton village centre": [
"cherry hinton village center"
],
"cherry hinton village center": [
"cherry hinton village centre"
],
"cherry hinton hall and grounds": [
"cherry hinton hall"
],
"cherry hinton hall": [
"cherry hinton hall and grounds"
],
"cherry hinton water play": [
"cherry hinton water play park"
],
"cherry hinton water play park": [
"cherry hinton water play"
],
"christ college": [
"christ's college",
"christs college"
],
"christs college": [
"christ college",
"christ's college"
],
"churchills college": [
"churchill's college",
"churchill college"
],
"cineworld cinema": [
"cineworld"
],
"clair hall": [
"clare hall"
],
"clare hall": [
"clair hall"
],
"the fez club": [
"fez club"
],
"great saint marys church": [
"great saint mary's church",
"great saint mary's",
"great saint marys"
],
"jesus green outdoor pool": [
"jesus green"
],
"jesus green": [
"jesus green outdoor pool"
],
"kettles yard": [
"kettle's yard"
],
"kings college": [
"king's college"
],
"kings hedges learner pool": [
"king's hedges learner pool",
"king hedges learner pool"
],
"king hedges learner pool": [
"king's hedges learner pool",
"kings hedges learner pool"
],
"little saint marys church": [
"little saint mary's church",
"little saint mary's",
"little saint marys"
],
"mumford theatre": [
"mumford theater"
],
"museum of archaelogy": [
"museum of archaeology"
],
"museum of archaelogy and anthropology": [
"museum of archaeology and anthropology"
],
"peoples portraits exhibition": [
"people's portraits exhibition at girton college",
"peoples portraits exhibition at girton college",
"people's portraits exhibition"
],
"peoples portraits exhibition at girton college": [
"people's portraits exhibition at girton college",
"people's portraits exhibition",
"peoples portraits exhibition"
],
"queens college": [
"queens' college",
"queen's college"
],
"riverboat georgina": [
"riverboat"
],
"saint barnabas": [
"saint barbabas press gallery"
],
"saint barnabas press gallery": [
"saint barbabas"
],
"saint catharines college": [
"saint catharine's college",
"saint catharine's"
],
"saint johns college": [
"saint john's college",
"st john's college",
"st johns college"
],
"scott polar": [
"scott polar museum"
],
"scott polar museum": [
"scott polar"
],
"scudamores punting co": [
"scudamore's punting co",
"scudamores punting",
"scudamore's punting",
"scudamores",
"scudamore's",
"scudamore"
],
"scudamore": [
"scudamore's punting co",
"scudamores punting co",
"scudamores punting",
"scudamore's punting",
"scudamores",
"scudamore's"
],
"sheeps green and lammas land park fen causeway": [
"sheep's green and lammas land park fen causeway",
"sheep's green and lammas land park",
"sheeps green and lammas land park",
"lammas land park",
"sheep's green",
"sheeps green"
],
"sheeps green and lammas land park": [
"sheep's green and lammas land park fen causeway",
"sheeps green and lammas land park fen causeway",
"sheep's green and lammas land park",
"lammas land park",
"sheep's green",
"sheeps green"
],
"lammas land park": [
"sheep's green and lammas land park fen causeway",
"sheeps green and lammas land park fen causeway",
"sheep's green and lammas land park",
"sheeps green and lammas land park",
"sheep's green",
"sheeps green"
],
"sheeps green": [
"sheep's green and lammas land park fen causeway",
"sheeps green and lammas land park fen causeway",
"sheep's green and lammas land park",
"sheeps green and lammas land park",
"lammas land park",
"sheep's green"
],
"soul tree nightclub": [
"soul tree night club",
"soul tree",
"soultree"
],
"soultree": [
"soul tree nightclub",
"soul tree night club",
"soul tree"
],
"the man on the moon": [
"man on the moon"
],
"man on the moon": [
"the man on the moon"
],
"the junction": [
"junction theatre",
"junction theater"
],
"junction theatre": [
"the junction",
"junction theater"
],
"old schools": [
"old school"
],
"vue cinema": [
"vue"
],
"wandlebury country park": [
"the wandlebury"
],
"the wandlebury": [
"wandlebury country park"
],
"whipple museum of the history of science": [
"whipple museum",
"history of science museum"
],
"history of science museum": [
"whipple museum of the history of science",
"whipple museum"
],
"williams art and antique": [
"william's art and antique"
],
"alimentum": [
"restaurant alimentum"