forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlayouts.h
506 lines (426 loc) · 14.9 KB
/
layouts.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Defines additional layout functions used in Permute GEMM example to simplify
computing reference permutations of 4/5D tensors when source data is column-major.
*/
#pragma once
#include <cuda/std/cassert>
#include "cutlass/cutlass.h"
#include "cutlass/layout/pitch_linear.h"
#include "cutlass/layout/matrix.h"
#include "cutlass/coord.h"
#include "cutlass/tensor_coord.h"
namespace cutlass {
namespace layout {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Mapping function for 4-D CWHN tensors.
class TensorCWHN {
public:
/// Logical rank of tensor
static int const kRank = 4;
/// Rank of stride vector
static int const kStrideRank = 3;
/// Index type used for coordinates
using Index = int32_t;
/// Long index type used for offsets
using LongIndex = int64_t;
/// Logical coordinate (n, h, w, c)
using TensorCoord = Tensor4DCoord;
/// Stride vector
using Stride = Coord<kStrideRank>;
private:
//
// Data members
//
/// Stride data member - [n, hn, whn]
Stride stride_;
public:
//
// Methods
//
/// Constructor
CUTLASS_HOST_DEVICE
TensorCWHN(Stride const &stride = Stride(0)): stride_(stride) { }
/// Constructor
CUTLASS_HOST_DEVICE
TensorCWHN(
typename Stride::Index stride_h, ///< number of elements between adjacent N coordinates
typename Stride::Index stride_w, ///< number of elements between adjacent C coordinates
typename Stride::Index stride_c ///< number of elements between adjacent W coordinates
):
stride_(make_Coord(stride_h, stride_w, stride_c)) { }
/// Constructor
// Once convolutions implement 64b stride this ctor can be deleted
CUTLASS_HOST_DEVICE
TensorCWHN(Coord<kStrideRank, LongIndex> const &stride):
stride_(make_Coord(
static_cast<typename Stride::Index>(stride[0]),
static_cast<typename Stride::Index>(stride[1]),
static_cast<typename Stride::Index>(stride[2]))
) { }
/// Helper returns a layout to a tightly packed WCNH tensor.
CUTLASS_HOST_DEVICE
static TensorCWHN packed(TensorCoord const &extent) {
return TensorCWHN(
make_Coord(
extent.n(),
extent.h() * extent.n(),
extent.w() * extent.h() * extent.n()
)
);
}
/// Returns the offset of a coordinate (n, h, w, c) in linear memory.
CUTLASS_HOST_DEVICE
LongIndex operator()(TensorCoord const &coord) const {
return coord.n() +
LongIndex(stride_[0] * coord.h()) +
LongIndex(stride_[1] * coord.w()) +
LongIndex(stride_[2] * coord.c());
}
/// Returns the offset of a pitchlinear coordinate in linear memory.
CUTLASS_HOST_DEVICE
LongIndex operator()(PitchLinearCoord coord) const {
return coord.contiguous() + LongIndex(coord.strided() * stride_[2]);
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride stride() const {
return stride_;
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride & stride() {
return stride_;
}
/// Compute the number of contiguous elements needed to store a tensor with the given size
CUTLASS_HOST_DEVICE
LongIndex capacity(TensorCoord const &extent) const {
// it does not make sense if the extent is larger than stride
// and we could not rely on the capacity calculation in such cases
// we could move this checkers to debug code only
if ((extent.n() > stride_[0])
|| (extent.h() * stride_[0] > stride_[1])
|| (extent.w() * stride_[1] > stride_[2])) {
assert(0);
}
return extent.c() * stride_[2];
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Mapping function for 4-D NHCW tensors.
class TensorNHCW {
public:
/// Logical rank of tensor
static int const kRank = 4;
/// Rank of stride vector
static int const kStrideRank = 3;
/// Index type used for coordinates
using Index = int32_t;
/// Long index type used for offsets
using LongIndex = int64_t;
/// Logical coordinate (n, h, w, c)
using TensorCoord = Tensor4DCoord;
/// Stride vector
using Stride = Coord<kStrideRank>;
private:
//
// Data members
//
/// Stride data member - [w, cw, hcw]
Stride stride_;
public:
//
// Methods
//
/// Constructor
CUTLASS_HOST_DEVICE
TensorNHCW(Stride const &stride = Stride(0)): stride_(stride) { }
/// Constructor
CUTLASS_HOST_DEVICE
TensorNHCW(
typename Stride::Index stride_c, ///< number of elements between adjacent C coordinates
typename Stride::Index stride_h, ///< number of elements between adjacent H coordinates
typename Stride::Index stride_n ///< number of elements between adjacent N coordinates
):
stride_(make_Coord(stride_c, stride_h, stride_n)) { }
/// Constructor
// Once convolutions implement 64b stride this ctor can be deleted
CUTLASS_HOST_DEVICE
TensorNHCW(Coord<kStrideRank, LongIndex> const &stride):
stride_(make_Coord(
static_cast<typename Stride::Index>(stride[0]),
static_cast<typename Stride::Index>(stride[1]),
static_cast<typename Stride::Index>(stride[2]))
) { }
/// Helper returns a layout to a tightly packed WCNH tensor.
CUTLASS_HOST_DEVICE
static TensorNHCW packed(TensorCoord const &extent) {
return TensorNHCW(
make_Coord(
extent.w(),
extent.c() * extent.w(),
extent.h() * extent.c() * extent.w()
)
);
}
/// Returns the offset of a coordinate (n, h, w, c) in linear memory.
CUTLASS_HOST_DEVICE
LongIndex operator()(TensorCoord const &coord) const {
return coord.w() +
LongIndex(stride_[0] * coord.c()) +
LongIndex(stride_[1] * coord.h()) +
LongIndex(stride_[2] * coord.n());
}
/// Returns the offset of a pitchlinear coordinate in linear memory.
CUTLASS_HOST_DEVICE
LongIndex operator()(PitchLinearCoord coord) const {
return coord.contiguous() + LongIndex(coord.strided() * stride_[2]);
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride stride() const {
return stride_;
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride & stride() {
return stride_;
}
/// Compute the number of contiguous elements needed to store a tensor with the given size
CUTLASS_HOST_DEVICE
LongIndex capacity(TensorCoord const &extent) const {
// it does not make sense if the extent is larger than stride
// and we could not rely on the capacity calculation in such cases
// we could move this checkers to debug code only
if ((extent.w() > stride_[0])
|| (extent.c() * stride_[0] > stride_[1])
|| (extent.h() * stride_[1] > stride_[2])) {
assert(0);
}
return extent.n() * stride_[2];
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Mapping function for 4-D NHCW tensors.
class TensorNCWH {
public:
/// Logical rank of tensor
static int const kRank = 4;
/// Rank of stride vector
static int const kStrideRank = 3;
/// Index type used for coordinates
using Index = int32_t;
/// Long index type used for offsets
using LongIndex = int64_t;
/// Logical coordinate (n, h, w, c)
using TensorCoord = Tensor4DCoord;
/// Stride vector
using Stride = Coord<kStrideRank>;
private:
//
// Data members
//
/// Stride data member - [h, wh, cwh]
Stride stride_;
public:
//
// Methods
//
/// Constructor
CUTLASS_HOST_DEVICE
TensorNCWH(Stride const &stride = Stride(0)): stride_(stride) { }
/// Constructor
CUTLASS_HOST_DEVICE
TensorNCWH(
typename Stride::Index stride_w, ///< number of elements between adjacent C coordinates
typename Stride::Index stride_c, ///< number of elements between adjacent H coordinates
typename Stride::Index stride_n ///< number of elements between adjacent N coordinates
):
stride_(make_Coord(stride_w, stride_c, stride_n)) { }
/// Constructor
// Once convolutions implement 64b stride this ctor can be deleted
CUTLASS_HOST_DEVICE
TensorNCWH(Coord<kStrideRank, LongIndex> const &stride):
stride_(make_Coord(
static_cast<typename Stride::Index>(stride[0]),
static_cast<typename Stride::Index>(stride[1]),
static_cast<typename Stride::Index>(stride[2]))
) { }
/// Helper returns a layout to a tightly packed WCNH tensor.
CUTLASS_HOST_DEVICE
static TensorNCWH packed(TensorCoord const &extent) {
return TensorNCWH(
make_Coord(
extent.h(),
extent.w() * extent.h(),
extent.c() * extent.w() * extent.h()
)
);
}
/// Returns the offset of a coordinate (n, h, w, c) in linear memory.
CUTLASS_HOST_DEVICE
LongIndex operator()(TensorCoord const &coord) const {
return coord.h() +
LongIndex(stride_[0] * coord.w()) +
LongIndex(stride_[1] * coord.c()) +
LongIndex(stride_[2] * coord.n());
}
/// Returns the offset of a pitchlinear coordinate in linear memory.
CUTLASS_HOST_DEVICE
LongIndex operator()(PitchLinearCoord coord) const {
return coord.contiguous() + LongIndex(coord.strided() * stride_[2]);
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride stride() const {
return stride_;
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride & stride() {
return stride_;
}
/// Compute the number of contiguous elements needed to store a tensor with the given size
CUTLASS_HOST_DEVICE
LongIndex capacity(TensorCoord const &extent) const {
// it does not make sense if the extent is larger than stride
// and we could not rely on the capacity calculation in such cases
// we could move this checkers to debug code only
if ((extent.h() > stride_[0])
|| (extent.w() * stride_[0] > stride_[1])
|| (extent.c() * stride_[1] > stride_[2])) {
assert(0);
}
return extent.n() * stride_[2];
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Mapping function for 5-D CWHDN tensors.
class TensorCWHDN {
public:
/// Logical rank of tensor
static int const kRank = 5;
/// Rank of stride vector
static int const kStrideRank = 4;
/// Index type used for coordinates
using Index = int32_t;
/// Long index type used for offsets
using LongIndex = int64_t;
/// Logical coordinate (n, d, h, w, c)
using TensorCoord = Tensor5DCoord;
/// Stride vector
using Stride = Coord<kStrideRank>;
private:
//
// Data members
//
/// Stride data member - [n, dn, hdn, whdn]
Stride stride_;
public:
//
// Methods
//
/// Constructor
CUTLASS_HOST_DEVICE
TensorCWHDN(Stride const &stride = Stride(0)): stride_(stride) { }
/// Constructor
CUTLASS_HOST_DEVICE
TensorCWHDN(
typename Stride::Index n,
typename Stride::Index dn,
typename Stride::Index hdn,
typename Stride::Index whdn):
stride_(make_Coord(n, dn, hdn, whdn)) { }
/// Constructor
// Once convolutions implement 64b stride this ctor can be deleted
CUTLASS_HOST_DEVICE
TensorCWHDN(Coord<kStrideRank, LongIndex> const &stride):
stride_(make_Coord(
static_cast<typename Stride::Index>(stride[0]),
static_cast<typename Stride::Index>(stride[1]),
static_cast<typename Stride::Index>(stride[2]),
static_cast<typename Stride::Index>(stride[3]))
) { }
/// Helper returns a layout to a tightly packed CWHDN tensor.
CUTLASS_HOST_DEVICE
static TensorCWHDN packed(TensorCoord const &extent) {
return TensorCWHDN(
make_Coord(
extent.n(),
extent.d() * extent.n(),
extent.h() * extent.d() * extent.n(),
extent.w() * extent.h() * extent.d() * extent.n()
)
);
}
/// Returns the offset of a coordinate (n, d, h, w, c) in linear memory.
CUTLASS_HOST_DEVICE
LongIndex operator()(TensorCoord const &coord) const {
return coord.n() +
LongIndex(stride_[0] * coord.d()) +
LongIndex(stride_[1] * coord.h()) +
LongIndex(stride_[2] * coord.w()) +
LongIndex(stride_[3] * coord.c());
}
/// Returns the offset of a pitchlinear coordinate in linear memory.
CUTLASS_HOST_DEVICE
LongIndex operator()(PitchLinearCoord coord) const {
return coord.contiguous() + LongIndex(coord.strided() * stride_[3]);
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride stride() const {
return stride_;
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride & stride() {
return stride_;
}
/// Compute the number of contiguous elements needed to store a tensor with the given size
CUTLASS_HOST_DEVICE
LongIndex capacity(TensorCoord const &extent) const {
// it does not make sense if the extent is larger than stride
// and we could not rely on the capacity calculation in such cases
// we could move this checkers to debug code only
if ((extent.n() > stride_[0])
|| (extent.d() * stride_[0] > stride_[1])
|| (extent.h() * stride_[1] > stride_[2])
|| (extent.w() * stride_[2] > stride_[3])) {
assert(0);
}
return extent.c() * stride_[3];
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace layout
} // namespace cutlass