forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathswizzle_layout.hpp
584 lines (501 loc) · 21.7 KB
/
swizzle_layout.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <cute/config.hpp> // CUTE_HOST_DEVICE
#include <cute/layout.hpp> // cute::Layout
#include <cute/layout_composed.hpp> // cute::ComposedLayout
#include <cute/swizzle.hpp> // cute::Swizzle, cute::get_swizzle primary template
/* Specialized functionality for a ComposedLayout of the form
* InvolutionFn o Offset o LayoutB
* where the InvolutionFn is a Swizzle<B,M,S> and is not linear (hence the need for the Offset).
*
* Because these are specializations for core functions of ComposedLayout, these Swizzle Layouts
* provide similar functionality to Layout including tiling, partitioning,
* coordinate-to-index mapping and layout manipulations, but are not considered "normal" layouts.
* For example, these provide shape() and size() functions, but do not provide stride() functions.
*
* Furthermore, each of these specializations uses Swizzle<>-specific knowledge in its implementation and
* attempts to decay itself to a normal-layout with dynamic or static strides when certain slicing conditions
* are met. This is possible by determining the subdomain of the Swizzle<> function that is identity and
* testing if LayoutB's codomain is contained within it. In general, MizedBits is used as the Offset to track
* statically-vs-dynamically known bits in the Offset to improve the decay to static or dynamic normal layouts.
*/
namespace cute
{
//
// Helper Function
//
template <int B, int M, int S, class Offset, class LayoutB>
struct get_swizzle<ComposedLayout<Swizzle<B,M,S>,Offset,LayoutB>> { using type = Swizzle<B,M,S>; };
//
// Constructors
//
template <int B, int M, int S>
CUTE_HOST_DEVICE constexpr
auto
make_layout(Swizzle<B,M,S> const& sxor)
{
return composition(sxor, Layout<Int<M+B+abs(S)>,Int<1>>{});
}
namespace detail {
template <int B, int M, int S, class OldShape, class OldStride, class NewShape, class NewStride>
CUTE_HOST_DEVICE constexpr
auto
transfer_swizzle(Layout<OldShape,OldStride> const& old_layout,
Layout<NewShape,NewStride> const& new_layout)
{
// Our goal is to determine a new swizzle for the strides in new_layout for consistent vectorizations
// This is accomplished by identifying
// S o L :=: S? o L*
// We identify the "active" portion of S by computing (P o L)(c*) where P is a projection generated by S
// Then that active identifier is transformed through the layouts:
// L*(L[(P o L)(c*)])
// which is a new swizzle identifier for S?, the new swizzle
// Projections of the swizzle layout for composition, P
auto swizzle_only_zy = make_layout(make_shape (Int<(1 << M)>{}, Int<(1 << B)>{}, Int<(1 << (abs(S)-B))>{}, Int<(1 << B )>{}, Int<1>{}),
make_stride( Int<0>{}, Int<(1 << M)>{}, Int<0>{}, Int<(1 << (M+abs(S)))>{}, Int<0>{}));
// Compose with the tile to get the swizzle projection, P o L [The Z and Y contributing portions of L]
auto layout_only_zy = composition(swizzle_only_zy, old_layout);
// Transform the end coordinate to get the active bits of the swizzle, (P o L)(c*)
auto swizzle_active_bits = layout_only_zy(size(layout_only_zy)-Int<1>{});
// Get the Z bit and the Y bits -- keep only those that are active in Z *and* Y
auto zzz_msk = typename Swizzle<B,M,S>::zzz_msk{};
auto yyy_msk = typename Swizzle<B,M,S>::yyy_msk{};
auto msk_sft = typename Swizzle<B,M,S>::msk_sft{};
auto active_Z = swizzle_active_bits & shiftr(swizzle_active_bits, msk_sft) & zzz_msk;
auto active_Y = swizzle_active_bits & shiftr(swizzle_active_bits, -msk_sft) & yyy_msk;
// Pass the identifiers through the old layout and new layout to make a new swizzle identifier, L*(L[(P o L)(c*)])
auto new_active_Z = new_layout(old_layout.get_1d_coord(active_Z));
auto new_active_Y = new_layout(old_layout.get_1d_coord(active_Y));
// Use this new swizzle identifier to construct the new swizzle for new_layout
// (this also makes sure it's a "valid" swizzle that Swizzle can represent)
return composition(make_swizzle<new_active_Y,new_active_Z>(), new_layout);
}
} // end namespace detail
template <int B, int M, int S, class Offset, class Layout>
CUTE_HOST_DEVICE constexpr
auto
make_fragment_like(ComposedLayout<Swizzle<B,M,S>,Offset,Layout> const& layout)
{
return make_fragment_like(layout.layout_b());
}
//
// Utilities
//
namespace detail {
// Get just the Swizzle part of a composed layout.
template <int B, int M, int S, class Offset, class LayoutB>
CUTE_HOST_DEVICE constexpr
auto
get_swizzle_portion(ComposedLayout<Swizzle<B,M,S>,Offset,LayoutB>)
{
return Swizzle<B,M,S>{};
}
// A non-swizzled layout's "Swizzle part" is the identity swizzle.
template <class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
get_swizzle_portion(Layout<Shape,Stride>)
{
return Swizzle<0,4,3>{};
}
// Get the "non-swizzle" part of a composed layout,
// which is the underlying (non-composed) Layout.
template <int B, int M, int S, class Offset, class LayoutB>
CUTE_HOST_DEVICE constexpr
auto
get_nonswizzle_portion(ComposedLayout<Swizzle<B,M,S>,Offset,LayoutB> const& slayout)
{
return slayout.layout_b();
}
// The non-swizzle part of a non-swizzled layout is just the Layout.
template <class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
get_nonswizzle_portion(Layout<Shape,Stride> const& slayout)
{
return slayout;
}
} // namespace detail
//
// Slice a Swizzled ComposedLayout
//
namespace detail {
template <class IntZ, class IntY, class Offset, int... I>
CUTE_HOST_DEVICE constexpr
auto
make_swizzle_strides(true_type,
IntZ const& Z,
IntY const& Y,
Offset const& offset,
int_sequence<I...>)
{
// Below is an optimized/compressed version of:
//return cute::make_tuple((swizzle(offset + Z*Int<(1 << I)>{}) - swizzle(offset))...);
// with knowledge of Swizzle, I... ranges for each B bits,
// and the layout won't slice along z-bits that are already set
// y\z 0 1
// 0 Z DC
// 1 -Z DC
return cute::make_tuple(conditional_return((offset & (Y << Int<I>{})) == Int<0>{}, Z * Int<(1 << I)>{}, -Z * Int<(1 << I)>{})...);
}
template <class IntZ, class IntY, class Offset, int... I>
CUTE_HOST_DEVICE constexpr
auto
make_swizzle_strides(false_type,
IntZ const& Z,
IntY const& Y,
Offset const& offset,
int_sequence<I...>)
{
// Below is an optimized/compressed version of:
//return cute::make_tuple((swizzle(offset + Y*Int<(1 << I)>{}) - swizzle(offset))...);
// with knowledge of Swizzle, I... ranges for each B bits,
// and the layout won't slice along y-bits that are already set
// y\z 0 1
// 0 Y+Z Y-Z
// 1 DC DC
return cute::make_tuple(conditional_return((offset & (Z << Int<I>{})) == Int<0>{}, (Y+Z) * Int<(1 << I)>{}, (Y-Z) * Int<(1 << I)>{})...);
}
} // end namespace detail
template <class Coord, int B, int M, int S, class Offset, class Layout>
CUTE_HOST_DEVICE constexpr
auto
slice_and_offset(Coord const& coord, ComposedLayout<Swizzle<B,M,S>,Offset,Layout> const& layout)
{
if constexpr (all_underscore<Coord>::value) {
// Skip the expensive/complicated attempt to decay to a normal layout and just reshape
return cute::make_tuple(composition(layout.layout_a(), layout.offset(), slice(coord, layout.layout_b())), Int<0>{});
} else {
// Projections of the swizzle layout for composition
auto sw = make_layout(make_shape(Int<(1 << M)>{}, Int<(1 << B)>{}, Int<(1 << (abs(S)-B))>{}, Int<(1 << B)>{}, Int<1>{}));
auto swizzle_anti_zy = make_layout(shape(sw),
make_stride(stride<0>(sw), Int<0>{}, stride<2>(sw), Int<0>{}, size(sw)));
auto swizzle_only_zy = make_layout(shape(sw),
make_stride( Int<0>{}, stride<1>(sw), Int<0>{}, stride<3>(sw), Int<0>{}));
// The portion of the layout that is not yet consumed
auto sliced_layout = slice(coord, layout.layout_b());
// The portion of the layout that we are consuming now
auto diced_layout = dice(coord, layout.layout_b());
auto diced_coord = dice(coord, coord);
auto diced_layout_anti_zy = composition(swizzle_anti_zy, diced_layout);
auto diced_layout_only_zy = composition(swizzle_only_zy, diced_layout);
// New swizzle and offset
auto swizzle = layout.layout_a();
// offset_only_zy interacts with swizzle and gets accumulated with layout.offset()
// being careful about the static/dynamic contributions from diced_layout and diced_coord
auto offset_only_zy = layout.offset() ^ to_mixed_bits(diced_layout_only_zy, diced_coord);
// offset_anti_zy always gets passed through, no interaction with swizzle
auto offset_anti_zy = diced_layout_anti_zy(diced_coord);
// If Layout's codomain hits on Y AND Z, then it's not reducible
// If Layout's codomain hits on Y XOR Z, then it's dynamic-normal
// If Layout's codomain hits on neither Y NOR Z, then it's static-normal
// If the sliced_layout hits two bits that are swizzled together, then don't attempt to decay
// Compose with the layout to get the swizzle projection, P o L [The Z and Y contributing portions of L]
// (this also tests that shape/stride of layout compose with swizzle)
auto sliced_layout_only_zy = composition(swizzle_only_zy, sliced_layout);
// Transform the end coordinate to get the active bits of the swizzle, (P o L)(c*)
[[maybe_unused]] auto swizzle_active_bits = sliced_layout_only_zy(size(sliced_layout_only_zy)-Int<1>{});
// Determine if any active bits collide under the swizzle for potential decay
if constexpr (is_constant<0, decltype(not (swizzle_active_bits & ~swizzle(swizzle_active_bits)))>::value)
{ // Hits on Y AND Z, so it's not reducible
return cute::make_tuple(composition(swizzle, offset_only_zy, sliced_layout), offset_anti_zy);
} else
{ // Misses on Y or Z, so it's static-normal or dynamic-normal
// Lowest bit of the Z and Y masks
auto Z = typename Swizzle<B,M,S>::zzz_msk{} & -typename Swizzle<B,M,S>::zzz_msk{};
auto Y = typename Swizzle<B,M,S>::yyy_msk{} & -typename Swizzle<B,M,S>::yyy_msk{};
auto stride_lo = detail::make_swizzle_strides(Z < Y, Z, Y, offset_only_zy, make_int_sequence<B>{});
auto stride_hi = detail::make_swizzle_strides(Z > Y, Z, Y, offset_only_zy, make_int_sequence<B>{});
// Construct a (dynamic) layout that we can perform the composition with
auto swizzle_layout = make_layout(make_shape (Int<(1 << M)>{}, repeat<B>(Int<2>{}), Int<(1 << (abs(S)-B))>{}, repeat<B>(Int<2>{}), Int< 1>{}),
make_stride(Int< 1>{}, stride_lo, Int<(1 << (M+B))>{}, stride_hi , Int<(1 << (M+B+abs(S)))>{}));
// Decay to a normal layout with offset
return cute::make_tuple(composition(swizzle_layout, sliced_layout),
swizzle(offset_only_zy) + offset_anti_zy);
}
}
CUTE_GCC_UNREACHABLE;
}
//
// composition
//
// Ignore identity case
template <int M, int S,
class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
composition(Swizzle<0,M,S> const&,
Int<0> const&,
Layout<Shape,Stride> const& layout)
{
return layout;
}
template <int B, int M, int S,
class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
composition(Swizzle<B,M,S> const& sxor,
Layout<Shape,Stride> const& layout)
{
return composition(sxor, Int<0>{}, layout);
}
template <class ShapeA, class StrideA,
int B, int M, int S>
CUTE_HOST_DEVICE constexpr
auto
composition(Layout<ShapeA,StrideA> const& a,
Swizzle<B,M,S> const& b)
{
// Get the Z bits and the Y bits
auto active_Y = a(typename Swizzle<B,M,S>::yyy_msk{});
auto active_Z = a(typename Swizzle<B,M,S>::zzz_msk{});
// Works in simple cases... but could be greatly generalized
return composition(make_swizzle<active_Y,active_Z>(), a);
}
//
// inverse
//
// Specialization to attempt to pass-through the Swizzle back to the left -- Needed?
template <int B, int M, int S, class Offset, class Layout>
CUTE_HOST_DEVICE constexpr
auto
right_inverse(ComposedLayout<Swizzle<B,M,S>,Offset,Layout> const& layout)
{
if constexpr (is_constant<0, Offset>::value) {
return composition(right_inverse(layout.layout_b()), layout.layout_a());
} else {
return composition(right_inverse(layout.layout_b()), right_inverse(layout.offset()), right_inverse(layout.layout_a()));
}
}
// Specialization to attempt to pass-through the Swizzle back to the left -- Needed?
template <int B, int M, int S, class Offset, class Layout>
CUTE_HOST_DEVICE constexpr
auto
left_inverse(ComposedLayout<Swizzle<B,M,S>,Offset,Layout> const& layout)
{
if constexpr (is_constant<0, Offset>::value) {
return composition(left_inverse(layout.layout_b()), layout.layout_a());
} else {
return composition(left_inverse(layout.layout_b()), left_inverse(layout.offset()), left_inverse(layout.layout_a()));
}
}
template <int B, int M, int S>
CUTE_HOST_DEVICE constexpr
Swizzle<B,M,S>
right_inverse(Swizzle<B,M,S> const& sw)
{
return sw;
}
template <int B, int M, int S>
CUTE_HOST_DEVICE constexpr
Swizzle<B,M,S>
left_inverse(Swizzle<B,M,S> const& sw)
{
return sw;
}
// Kludge -- Probably want an OffsetFn<T> here instead
template <class T, __CUTE_REQUIRES(is_integral<T>::value)>
CUTE_HOST_DEVICE constexpr
auto
right_inverse(T const& t)
{
return -t;
}
// Kludge -- Probably want an OffsetFn<T> here instead
template <class T, __CUTE_REQUIRES(is_integral<T>::value)>
CUTE_HOST_DEVICE constexpr
auto
left_inverse(T const& t)
{
return -t;
}
//
// Upcast and Downcast
//
template <int N, int B, int M, int S>
CUTE_HOST_DEVICE constexpr
auto
upcast(Swizzle<B,M,S> const& swizzle)
{
static_assert(has_single_bit(N), "N must be a power of two");
constexpr int log2_n = bit_width(uint32_t(N)) - 1;
constexpr int NewM = M - log2_n;
if constexpr (NewM >= 0) {
return Swizzle<B,NewM,S>{};
} else {
return Swizzle<cute::max(B+NewM,0), 0, S>{};
}
CUTE_GCC_UNREACHABLE;
}
template <int N, int B, int M, int S>
CUTE_HOST_DEVICE constexpr
auto
downcast(Swizzle<B,M,S> const& swizzle)
{
static_assert(has_single_bit(N), "N must be a power of two");
constexpr int log2_n = bit_width(uint32_t(N)) - 1;
return Swizzle<B,(M + log2_n),S>{};
}
template <class OldType, class NewType,
int B, int M, int S>
CUTE_HOST_DEVICE constexpr
auto
recast_layout(Swizzle<B,M,S> const& swizzle)
{
using scale = decltype(trait_ratio(sizeof_bits<NewType>{}, sizeof_bits<OldType>{}));
if constexpr (scale::num == 1 && scale::den == 1) {
return swizzle;
}
else if constexpr (scale::num == 1) {
return downcast<scale::den>(swizzle);
}
else if constexpr (scale::den == 1) {
return upcast<scale::num>(swizzle);
}
else {
return downcast<scale::den>(upcast<scale::num>(layout));
}
CUTE_GCC_UNREACHABLE;
}
template <int B, int M, int S>
CUTE_HOST_DEVICE constexpr
auto
max_alignment(Swizzle<B,M,S> const&)
{
return Int<(1 << M)>{};
}
template <int B, int M, int S, class Offset, class LayoutB>
CUTE_HOST_DEVICE constexpr
auto
max_alignment(ComposedLayout<Swizzle<B,M,S>,Offset,LayoutB> const& layout)
{
return gcd(max_alignment(layout.layout_a()),
max_alignment(layout.offset()),
max_alignment(layout.layout_b()));
}
//
// Other operations
//
template <int B, int M, int S, class Offset, class LayoutB, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
max_common_layout(ComposedLayout<Swizzle<B,M,S>,Offset,LayoutB> const& a,
Layout<Shape,Stride> const& b)
{
auto common = max_common_layout(a.layout_b(), b);
auto base = Int<(1 << M)>{};
if constexpr (base < size(common)) {
return common.compose(base); // Truncate common to size base
} else {
return common;
}
}
template <class Shape, class Stride, int B, int M, int S, class Offset, class LayoutB>
CUTE_HOST_DEVICE constexpr
auto
max_common_layout(Layout<Shape,Stride> const& a,
ComposedLayout<Swizzle<B,M,S>,Offset,LayoutB> const& b)
{
return max_common_layout(b, a);
}
template <int B, int M, int S, class Offset, class LayoutB, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
max_common_vector(ComposedLayout<Swizzle<B,M,S>,Offset,LayoutB> const& a,
Layout<Shape,Stride> const& b)
{
// This assumes that Offset is in the YZ domain of the Swizzle...
return cute::min(max_common_vector(a.layout_b(), b), Int<(1 << M)>{});
}
template <class Shape, class Stride, int B, int M, int S, class Offset, class LayoutB>
CUTE_HOST_DEVICE constexpr
auto
max_common_vector(Layout<Shape,Stride> const& a,
ComposedLayout<Swizzle<B,M,S>,Offset,LayoutB> const& b)
{
return max_common_vector(b, a);
}
template <int B0, int M0, int S0, class Offset0, class LayoutB0,
int B1, int M1, int S1, class Offset1, class LayoutB1>
CUTE_HOST_DEVICE constexpr
auto
max_common_vector(ComposedLayout<Swizzle<B0,M0,S0>,Offset0,LayoutB0> const& a,
ComposedLayout<Swizzle<B1,M1,S1>,Offset1,LayoutB1> const& b)
{
// Typical impl is composition(a, right_inverse(b))
// so this is Sw0 o B0 o rinv(Sw1 o B1) = Sw0 o B0 o rinv(B1) o Sw1
auto vec = max_common_vector(a.layout_b(), b.layout_b());
// This assumes that Offset is in the YZ domain of the Swizzle...
if constexpr (Swizzle<B0,M0,S0>{} == Swizzle<B1,M1,S1>{}) {
return vec;
} else {
return cute::min(vec, Int<(1 << M0)>{}, Int<(1 << M1)>{});
}
CUTE_GCC_UNREACHABLE;
}
///////////////////////////////////////////////////////////////////////////////
// ComposedLayout as second argument is often more difficult...
template <class Shape, class Stride,
int B, int M, int S, class Offset, class LayoutT>
CUTE_HOST_DEVICE constexpr
auto
logical_product(Layout<Shape,Stride> const& layout,
ComposedLayout<Swizzle<B,M,S>,Offset,LayoutT> const& tiler)
{
CUTE_STATIC_ASSERT_V(tiler.offset() == Int<0>{}, "Require Swizzle offset == 0.");
// The new layout -- if swizzle wasn't an issue, this is the result
// our goal is to determine a new swizzle for these strides
auto new_layout = logical_product(layout, tiler.layout_b());
// This is accomplished by identifying
// S o L :=: S? o L*
// We identify the "active" portion of S by computing (P o L)(c*) where P is a projection generated by S
// Then that active identifier is transformed through the layouts:
// L*(L[(P o L)(c*)])
// which is a new swizzle identifier for S?, the new swizzle
// Projections of the swizzle layout for composition, P
auto swizzle_only_zy = make_layout(make_shape (Int<(1 << M)>{}, Int<(1 << B)>{}, Int<(1 << (abs(S)-B))>{}, Int<(1 << B )>{}, Int<1>{}),
make_stride( Int<0>{}, Int<(1 << M)>{}, Int<0>{}, Int<(1 << (M+abs(S)))>{}, Int<0>{}));
// Compose with the tiler to get the swizzle projection, P o L [The Z and Y contributing portions of L]
auto layout_only_zy = composition(swizzle_only_zy, tiler.layout_b());
// Transform the end coordinate to get the active bits of the swizzle, (P o L)(c*)
auto swizzle_active_bits = layout_only_zy(size(layout_only_zy)-Int<1>{});
// Get the Z bit and the Y bits
auto active_Z = swizzle_active_bits & typename Swizzle<B,M,S>::zzz_msk{};
auto active_Y = swizzle_active_bits & typename Swizzle<B,M,S>::yyy_msk{};
// Pass the identifiers through the old layout and new layout to make a new swizzle identifier, L*(L[(P o L)(c*)])
auto new_active_Z = new_layout(Int<0>{}, tiler.layout_b()[active_Z]);
auto new_active_Y = new_layout(Int<0>{}, tiler.layout_b()[active_Y]);
// Use this new swizzle identifier to construxt the new swizzle for new_layout
// (this also makes sure it's a "valid" swizzle that Swizzle can represent)
return composition(make_swizzle<new_active_Y,new_active_Z>(), new_layout);
}
} // end namespace cute