forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfunctional.h
930 lines (813 loc) · 24.3 KB
/
functional.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Define basic numeric operators
This is inspired by the Standard Library's <functional> header.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/numeric_types.h"
#include "cutlass/platform/platform.h"
#if defined(__CUDACC_RTC__)
#include "cutlass/floating_point_nvrtc.h"
#endif
#include <cuda_runtime.h>
#if defined(CUTLASS_ARCH_WMMA_ENABLED)
#include <mma.h>
#endif // defined(CUTLASS_ARCH_WMMA_ENABLED)
#ifdef _MSC_VER
// Provides support for alternate operators such as 'and', 'or', ...
#include <ciso646>
#endif // _MSC_VER
namespace cutlass {
/////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T>
struct absolute_value_op {
CUTLASS_HOST_DEVICE
T operator()(T lhs) const {
return abs(lhs);
}
};
template <>
struct absolute_value_op<float> {
CUTLASS_HOST_DEVICE
float operator()(float lhs) const { return fabs(lhs); }
};
template <typename T>
struct plus {
CUTLASS_HOST_DEVICE
T operator()(T lhs, T const &rhs) const {
lhs += rhs;
return lhs;
}
};
template <typename T>
struct minus {
CUTLASS_HOST_DEVICE
T operator()(T lhs, T const &rhs) const {
lhs -= rhs;
return lhs;
}
};
template <typename T>
struct multiplies {
CUTLASS_HOST_DEVICE
T operator()(T lhs, T const &rhs) const {
lhs *= rhs;
return lhs;
}
};
template <typename T>
struct scale {
T const scaling_factor_;
CUTLASS_HOST_DEVICE
scale(float scaling_factor) : scaling_factor_(scaling_factor) {
}
T operator()(T const &rhs) const {
T result = rhs * scaling_factor_;
return result;
}
};
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
/// Partial specializations needed when __CUDA_NO_HALF2_OPERATORS__ is set
template<>
struct plus<__half2> {
CUTLASS_HOST_DEVICE
__half2 operator()(__half2 lhs, __half2 const &rhs) const {
return __hadd2(lhs, rhs);
}
};
template<>
struct minus<__half2> {
CUTLASS_HOST_DEVICE
__half2 operator()(__half2 lhs, __half2 const &rhs) const {
return __hsub2(lhs, rhs);
}
};
template<>
struct multiplies<__half2> {
CUTLASS_HOST_DEVICE
__half2 operator()(__half2 lhs, __half2 const &rhs) const {
return __hmul2(lhs, rhs);
}
};
/// Partial specializations needed when __CUDA_NO_HALF_OPERATORS__ is set
template<>
struct plus<__half> {
CUTLASS_HOST_DEVICE
__half operator()(__half lhs, __half const &rhs) const {
return __hadd(lhs, rhs);
}
};
template<>
struct minus<__half> {
CUTLASS_HOST_DEVICE
__half operator()(__half lhs, __half const &rhs) const {
return __hsub(lhs, rhs);
}
};
template<>
struct multiplies<__half> {
CUTLASS_HOST_DEVICE
__half operator()(__half lhs, __half const &rhs) const {
return __hmul(lhs, rhs);
}
};
#endif // defined(__CUDA_ARCH__)
/// Squares with optional conversion
template <typename T, typename Output = T>
struct square {
CUTLASS_HOST_DEVICE
Output operator()(T lhs) const {
multiplies<Output> mul_op;
Output y = Output(lhs);
return mul_op(y, y);
}
};
/// Returns the magnitude squared of an element.
template <typename T, typename Output = T>
struct magnitude_squared {
CUTLASS_HOST_DEVICE
Output operator()(T lhs) const {
multiplies<Output> mul_op;
Output y = Output(lhs);
return mul_op(y, y);
}
};
/// Computes the square of a difference with optional conversion
template <typename T, typename Output = T>
struct square_difference {
CUTLASS_HOST_DEVICE
Output operator()(T lhs, T rhs) const {
multiplies<Output> mul_op;
Output y = Output(lhs) - Output(rhs);
return mul_op(y, y);
}
};
/// Computes the square of a difference with optional conversion
template <typename T, typename Output = T>
struct magnitude_squared_difference {
CUTLASS_HOST_DEVICE
Output operator()(T lhs, T rhs) const {
multiplies<Output> mul_op;
Output y = Output(lhs) - Output(rhs);
return mul_op(y, y);
}
};
// Computes the reciprocal square root
template <typename T>
struct inverse_square_root;
template <>
struct inverse_square_root<float> {
CUTLASS_HOST_DEVICE
float operator()(float const &lhs) const {
#if defined(__CUDA_ARCH__)
return rsqrtf(lhs);
#else
return 1.f / std::sqrt(lhs);
#endif
}
};
template <>
struct inverse_square_root<half_t> {
CUTLASS_HOST_DEVICE
half_t operator()(half_t const &lhs) const {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ > 520)
auto result = hrsqrt(reinterpret_cast<__half const &>(lhs));
return reinterpret_cast<half_t const &>(result);
#else
return half_t(1.f / std::sqrt(half_t::convert(lhs)));
#endif
}
};
/// Divides
template <typename T>
struct divides {
CUTLASS_HOST_DEVICE
T operator()(T lhs, T const &rhs) const {
lhs /= rhs;
return lhs;
}
};
/// reciprocal_approximate
template <typename T>
struct reciprocal_approximate {
CUTLASS_HOST_DEVICE
T operator()(T lhs) const {
return divides<T>{}(T(1), lhs);
}
};
template <>
struct reciprocal_approximate <float> {
CUTLASS_HOST_DEVICE
float operator()(float lhs) const {
float ret;
#if defined(__CUDA_ARCH__)
asm volatile ("rcp.approx.f32 %0, %1;\n" : "=f"(ret) : "f"(lhs));
#else
ret = 1.0f / lhs;
#endif
return ret;
}
};
/// reciprocal_approximate with ftz
template<typename T>
struct reciprocal_approximate_ftz : reciprocal_approximate<T>
{};
template <>
struct reciprocal_approximate_ftz <float> {
CUTLASS_HOST_DEVICE
float operator()(float lhs) const {
float ret;
#if defined(__CUDA_ARCH__)
asm volatile ("rcp.approx.ftz.f32 %0, %1;\n" : "=f"(ret) : "f"(lhs));
#else
if (std::fpclassify(lhs) == FP_SUBNORMAL) {
lhs = 0.0f;
}
ret = 1.0f / lhs;
if (std::fpclassify(ret) == FP_SUBNORMAL) {
ret = 0.0f;
}
#endif
return ret;
}
};
/// Negate
template <typename T>
struct negate {
CUTLASS_HOST_DEVICE
T operator()(T lhs) const {
return -lhs;
}
};
/// Greater equal
template <typename T>
struct greater_equal {
CUTLASS_HOST_DEVICE
bool operator()(T const &lhs, T const &rhs) const {
return (lhs >= rhs);
}
};
/// Greater
template <typename T>
struct greater {
CUTLASS_HOST_DEVICE
bool operator()(T const &lhs, T const &rhs) const {
return (lhs > rhs);
}
};
/// Less equal
template <typename T>
struct less_equal {
CUTLASS_HOST_DEVICE
bool operator()(T const &lhs, T const &rhs) const {
return (lhs <= rhs);
}
};
/// Less
template <typename T>
struct less {
CUTLASS_HOST_DEVICE
bool operator()(T const &lhs, T const &rhs) const {
return (lhs < rhs);
}
};
template <typename T, bool PropagateNaN = false>
struct maximum {
CUTLASS_HOST_DEVICE
T operator()(T const &lhs, T const &rhs) const {
if constexpr (PropagateNaN && cutlass::platform::is_floating_point<T>::value) {
using CUTLASS_CMATH_NAMESPACE :: isnan;
// Call isnan unqualified, so argument-dependent lookup (ADL)
// will find overloads such as cutlass::isnan(half_t).
// Calling ::isnan or std::isnan directly would force
// implicit conversions to float of custom number types
// in the cutlass namespace (e.g., cutlass::half_t).
return lhs > rhs || isnan(lhs) ? lhs : rhs;
}
else {
return (lhs < rhs ? rhs : lhs);
}
}
};
// This is a subclass and not an alias
// in order to work around a known Clang issue,
// where a template template parameter with one template parameter
// does not match classes that take multiple template parameters
// but have defaults for all but the first.
template<typename T>
struct maximum_with_default_nan_propagation : public maximum<T>
{};
template <>
struct maximum<float, false> {
CUTLASS_HOST_DEVICE
float operator()(float const &lhs, float const &rhs) const {
return fmaxf(lhs, rhs);
}
};
template <>
struct maximum<float, true> {
CUTLASS_HOST_DEVICE
float operator()(float lhs, float rhs) const {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)
float res;
asm volatile("max.NaN.f32 %0, %1, %2;\n" : "=f"(res) : "f"(lhs), "f"(rhs));
return res;
#else
using CUTLASS_CMATH_NAMESPACE :: isnan;
return lhs > rhs || isnan(lhs) ? lhs : rhs;
#endif
}
};
// This is a subclass and not an alias
// in order to work around a known Clang issue,
// where a template template parameter with one template parameter
// does not match classes that take multiple template parameters
// but have defaults for all but the first.
template <typename T>
struct maximum_with_nan_propagation : maximum<T, true>
{};
// This alias exists for backwards compatibility only.
// Please use the correctly spelled class template above.
template <typename T>
using maximum_with_nan_propogation = maximum_with_nan_propagation<T>;
template <typename T, bool PropagateNaN = false>
struct minimum {
CUTLASS_HOST_DEVICE
T operator()(T const &lhs, T const &rhs) const {
if constexpr (PropagateNaN && cutlass::platform::is_floating_point<T>::value) {
using CUTLASS_CMATH_NAMESPACE :: isnan;
return lhs < rhs || isnan(lhs) ? lhs : rhs;
}
else {
return (rhs < lhs ? rhs : lhs);
}
}
};
template <>
struct minimum<float, false> {
CUTLASS_HOST_DEVICE
float operator()(float const &lhs, float const &rhs) const {
return fminf(lhs, rhs);
}
};
template <>
struct minimum<float, true> {
CUTLASS_HOST_DEVICE
float operator()(float lhs, float rhs) const {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)
float res;
asm volatile("min.NaN.f32 %0, %1, %2;\n" : "=f"(res) : "f"(lhs), "f"(rhs));
return res;
#else
// No need for ADL; call std::isnan(float) on host and ::isnan(float) on device.
return lhs < rhs || (CUTLASS_CMATH_NAMESPACE :: isnan(lhs)) ? lhs : rhs;
#endif
}
};
template <typename T>
struct minimum_with_nan_propagation : minimum<T, true>
{};
template <typename T, bool PropagateNaN = false>
struct maximum_absolute_value {
CUTLASS_HOST_DEVICE
float operator()(T const &lhs, T const &rhs) const {
absolute_value_op<T> abs_op;
maximum<T, PropagateNaN> max_op;
return max_op(abs_op(lhs), abs_op(rhs));
}
};
// assumes the left operand is already an absolute value
template <typename T, bool PropagateNaN = false>
struct maximum_absolute_value_reduction {
CUTLASS_HOST_DEVICE
float operator()(T const &lhs, T const &rhs) const {
absolute_value_op<T> abs_op;
maximum<T, PropagateNaN> max_op;
return max_op(lhs, abs_op(rhs));
}
};
/// Fused multiply-add
template <typename A, typename B = A, typename C = A>
struct multiply_add {
CUTLASS_HOST_DEVICE
C operator()(A const &a, B const &b, C const &c) const {
return C(a) * C(b) + c;
}
};
template <typename T>
struct square_and_plus {
CUTLASS_HOST_DEVICE
T operator()(T lhs, T const &rhs) const {
multiply_add<T> multiply_add_op;
return multiply_add_op(rhs, rhs, lhs);
}
};
// Fused multiply-add that takes exactly one template parameter.
// This is useful for working around a known Clang issue,
// where a template template parameter with one template parameter
// does not match classes that take multiple template parameters
// but have defaults for all but the first.
template <typename A>
struct homogeneous_multiply_add : public multiply_add<A, A, A>
{};
/// Fused multiply-add
template <typename A, typename B = A, typename C = A>
struct multiply_add_relu0 {
CUTLASS_HOST_DEVICE
C operator()(A const &a, B const &b, C const &c) const {
maximum<C> mx;
return mx(C(a) * C(b) + c, C(0));
}
};
/// Guarded-multiply-add
template <typename A, typename B = A, typename C = A>
struct guarded_multiply_add {
CUTLASS_HOST_DEVICE
C operator()(A const &a, B const &b, C const &c) const {
using CUTLASS_CMATH_NAMESPACE :: isnan;
if (isnan(a) || isnan(b)) {
return C(0);
}
return C(a) * C(b) + c;
}
};
/// Guarded-multiply-add
template <>
struct guarded_multiply_add<half_t, half_t, half_t> {
CUTLASS_HOST_DEVICE
half_t operator()(half_t const &a, half_t const &b, half_t const &c) const {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
half_t result;
asm ("fma.rn.oob.f16 %0, %1, %2, %3;\n"
: "=h"(*reinterpret_cast<uint16_t*>(&result))
: "h"(*reinterpret_cast<uint16_t const*>(&a)), "h"(*reinterpret_cast<uint16_t const*>(&b)), "h"(*reinterpret_cast<uint16_t const*>(&c)));
return result;
#else
// Namespace-qualifying isnan as cutlass::isnan saves the compiler
// the trouble of argument-dependent lookup. Calling std::isnan or
// ::isnan here would result in unwanted implicit conversion to float.
if (cutlass::isnan(a) || cutlass::isnan(b)) {
return half_t(0);
}
return a * b + c;
#endif
}
};
/// Guarded-multiply-add-relu0
template <typename A, typename B = A, typename C = A>
struct guarded_multiply_add_relu0 {
CUTLASS_HOST_DEVICE
C operator()(A const &a, B const &b, C const &c) const {
using CUTLASS_CMATH_NAMESPACE :: isnan;
if (isnan(a) || isnan(b)) {
return C(0);
}
maximum<C> mx;
return mx(C(a) * C(b) + c, C(0));
}
};
template <>
struct guarded_multiply_add_relu0<half_t, half_t, half_t> {
CUTLASS_HOST_DEVICE
half_t operator()(half_t const &a, half_t const &b, half_t const &c) const {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
half_t result;
asm ("fma.rn.oob.relu.f16 %0, %1, %2, %3;\n"
: "=h"(*reinterpret_cast<uint16_t*>(&result))
: "h"(*reinterpret_cast<uint16_t const*>(&a)), "h"(*reinterpret_cast<uint16_t const*>(&b)), "h"(*reinterpret_cast<uint16_t const*>(&c)));
return result;
#else
if (cutlass::isnan(a) || cutlass::isnan(b)) {
return half_t(0);
}
maximum<half_t> mx;
return mx(a * b + c, half_t(0));
#endif
}
};
/// Fused multiply-add
template <typename T>
struct and_add {
CUTLASS_HOST_DEVICE
T operator()(T const &a, T const &b, T const &c) const {
return ((a & b) + c);
}
};
/// Fused multiply-add
template <typename T>
struct xor_add {
CUTLASS_HOST_DEVICE
T operator()(T const &a, T const &b, T const &c) const {
return ((a ^ b) + c);
}
};
namespace detail {
// Whether namespace-unqualified conj(t) for t of type T is
// well-formed. This says whether the compiler can find
// namespace-unqualified conj(T) via argument-dependent lookup.
// If so, then CUTLASS assumes that conj(t) returns
// the complex conjugate of t.
template <typename T, typename Enable = void>
struct has_unqualified_conj : cutlass::platform::false_type
{};
template<typename T>
struct has_unqualified_conj<
T,
decltype(conj(cutlass::platform::declval<T>()), void())
> : cutlass::platform::true_type
{};
template <typename T>
constexpr bool has_unqualified_conj_v = has_unqualified_conj<T>::value;
} // namespace detail
// forward declaration (needed for conjugate below)
template<class T>
CUTLASS_HOST_DEVICE T conj(T const& z);
namespace detail {
// Whether cutlass::conj(t) for t of type T is well-formed.
// If so, then CUTLASS assumes that cutlass::conj(t)
// returns the complex conjugate of t.
template <typename T, typename Enable = void>
struct has_cutlass_conj : cutlass::platform::false_type
{};
template<typename T>
struct has_cutlass_conj<
T,
decltype(cutlass::conj(cutlass::platform::declval<T>()), void())
> : cutlass::platform::true_type
{};
template <typename T>
constexpr bool has_cutlass_conj_v = has_cutlass_conj<T>::value;
} // namespace detail
// Return the complex conjugate of the input.
//
// If the struct hasn't already been specialized for type T, then
//
// 1. for arithmetic types, return z;
//
// 2. for types where either (namespace-unqualified) conj(z) or
// cutlass::conj(z) is well formed, declare "using cutlass::conj;"
// and return conj(z); and
//
// 3. for everything else, return z.
//
// Regarding (1), the C++ Standard Library makes std::conj always
// return std::complex, even for (noncomplex) arithmetic types.
// cutlass::conj(T t) needs to return type T. This follows the
// convention of linear algebra software like the BLAS, where
// "conjugate transpose" means the same thing as "transpose" for a
// matrix of noncomplex numbers.
//
// Case (2) covers std::complex, cuda::std::complex, and non-Standard
// (including user-defined) complex number types (for which "conj(z)"
// is findable via argument-dependent lookup). cutlass::conj has a
// totally generic overload, but a more type-specific overload in any
// namespace will take precedence.
//
// Case (3) covers non-Standard non-complex number types.
//
// Users should not generally need to specialize this struct for their
// own custom complex or noncomplex types. The idiomatic way to
// identify a type T as "complex" is to make namespace-unqualified
// calls to conj(T) findable via argument-dependent lookup.
template <typename T>
struct conjugate {
CUTLASS_HOST_DEVICE
T operator()(T const& z) const {
if constexpr (cutlass::platform::is_arithmetic_v<T>) {
return z;
}
else if constexpr (detail::has_unqualified_conj_v<T> || detail::has_cutlass_conj_v<T>) {
using cutlass::conj;
return conj(z);
}
else {
return z;
}
}
};
template <typename T>
struct first {
CUTLASS_HOST_DEVICE
T operator()(T const & first, T const &...) const {
return first;
}
CUTLASS_HOST_DEVICE
T operator()(T const & first) const {
return first;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T>
struct logical_and {
CUTLASS_HOST_DEVICE
T operator()(T const &a, T const &b) const {
return ((static_cast<bool>(a) && static_cast<bool>(b)) ? T(1) : T());
}
};
template <typename T>
struct logical_or {
CUTLASS_HOST_DEVICE
T operator()(T const &a, T const &b) const {
return ((static_cast<bool>(a) || static_cast<bool>(b)) ? T(1) : T());
}
};
template <typename T>
struct logical_not {
CUTLASS_HOST_DEVICE
T operator()(T const &a) const {
return T(!(a));
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T>
struct bit_and {
CUTLASS_HOST_DEVICE
T operator()(T const &a, T const &b) const {
return a & b;
}
};
template <typename T>
struct bit_or {
CUTLASS_HOST_DEVICE
T operator()(T const &a, T const &b) const {
return a | b;
}
};
template <typename T>
struct bit_not {
CUTLASS_HOST_DEVICE
T operator()(T const &a) const {
return ~a;
}
};
template <typename T>
struct bit_xor {
CUTLASS_HOST_DEVICE
T operator()(T const &a, T const &b) const {
return a ^ b;
}
};
//////////////////////////////////////////////////////////////////////////////////////////////////
/// Atomic reductions
template <typename T>
struct atomic_add
{
CUTLASS_DEVICE
void operator()(T *ptr, const T &data)
{
#if defined(__CUDA_ARCH__)
atomicAdd(ptr, data);
#else
CUTLASS_UNUSED(ptr);
CUTLASS_UNUSED(data);
CUTLASS_NOT_IMPLEMENTED();
#endif
}
};
template<>
struct atomic_add<double>
{
CUTLASS_DEVICE
void operator()(double *ptr, const double &data)
{
#if !defined(__CUDA_ARCH__)
CUTLASS_UNUSED(ptr);
CUTLASS_UNUSED(data);
CUTLASS_NOT_IMPLEMENTED();
#elif (__CUDA_ARCH__ >= 600)
atomicAdd(ptr, data);
#else
// Use CAS loop
unsigned long long int* ptr_int = reinterpret_cast<unsigned long long int*>(ptr);
unsigned long long int old_int = *ptr_int;
unsigned long long int assumed_int;
do {
double update = data + __longlong_as_double(old_int);
assumed_int = old_int;
old_int = atomicCAS(ptr_int, assumed_int, __double_as_longlong(update));
} while (assumed_int != old_int);
#endif // (__CUDA_ARCH__ >= 600)
}
};
template<>
struct atomic_add<half2>
{
CUTLASS_DEVICE
void operator()(half2 *ptr, const half2 &data)
{
#if !defined(__CUDA_ARCH__) || (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 600))
CUTLASS_UNUSED(ptr);
CUTLASS_UNUSED(data);
CUTLASS_NOT_IMPLEMENTED();
#else
// Vector-2 atomic reduction requires .target sm_60 or higher
uint32_t word = reinterpret_cast<const uint32_t&>(data);
asm volatile ("red.gpu.global.add.noftz.f16x2 [%0], %1;\n" : : "l"(ptr), "r"(word));
#endif // (__CUDA_ARCH__ >= 600)
}
};
template <typename T>
using red [[deprecated("use atomic_add instead")]] = atomic_add<T>;
template <typename T>
struct atomic_maximum {
CUTLASS_DEVICE
T operator()(T *ptr, T value) const {
#if defined(__CUDA_ARCH__)
return atomicMax(ptr, value);
#else
CUTLASS_UNUSED(ptr);
CUTLASS_UNUSED(value);
CUTLASS_NOT_IMPLEMENTED();
return 0;
#endif
}
};
template <>
struct atomic_maximum<float> {
CUTLASS_DEVICE
float operator()(float *ptr, float value) const {
#if defined(__CUDA_ARCH__)
// In device code, make sure that we do NOT try to use
// std::signbit, as that won't work if building with NVRTC.
// Instead, prefix "::" to call signbit from the global namespace,
// which CUDA guarantees to work in device code without including
// any headers.
//
return ! ::signbit(value) ?
__int_as_float(atomicMax((int*)ptr, __float_as_int(value))) :
__uint_as_float(atomicMin((unsigned int*)ptr, __float_as_uint(value)));
#else
CUTLASS_UNUSED(ptr);
CUTLASS_UNUSED(value);
CUTLASS_NOT_IMPLEMENTED();
return 0;
#endif
}
};
// is_atomic
template <class Fn>
struct is_atomic : platform::false_type {};
template <class T>
struct is_atomic<atomic_add<T>> : platform::true_type {};
template <class T>
struct is_atomic<atomic_maximum<T>> : platform::true_type {};
/////////////////////////////////////////////////////////////////////////////////////////////////
//
// Partial specializations for nvcuda::wmma::fragment<Use, m, n, k, T, Layout>
//
/////////////////////////////////////////////////////////////////////////////////////////////////
#if defined(CUTLASS_ARCH_WMMA_ENABLED)
template<typename Use, int m, int n, int k, typename T, typename Layout>
struct plus<nvcuda::wmma::fragment<Use, m, n, k, T, Layout>>
{
using Fragment = nvcuda::wmma::fragment<Use, m, n, k, T, Layout>;
using ElementType = typename Fragment::element_type;
CUTLASS_HOST_DEVICE
Fragment operator()(Fragment const &lhs, Fragment const &rhs) const
{
Fragment result;
plus<ElementType> scalar_op;
ElementType *result_elts = reinterpret_cast<ElementType*>(&result);
const ElementType *lhs_elts = reinterpret_cast<const ElementType*>(&lhs);
const ElementType *rhs_elts = reinterpret_cast<const ElementType*>(&rhs);
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < Fragment::num_elements; i++) {
result_elts[i] = scalar_op(lhs_elts[i], rhs_elts[i]);
}
return result;
}
};
#endif // defined(CUTLASS_ARCH_WMMA_ENABLED)
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////