forked from cubiq/ComfyUI_IPAdapter_plus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIPAdapterPlus.py
1811 lines (1560 loc) · 76.3 KB
/
IPAdapterPlus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch
import os
import math
import folder_paths
import comfy.model_management as model_management
from node_helpers import conditioning_set_values
from comfy.clip_vision import load as load_clip_vision
from comfy.sd import load_lora_for_models
import comfy.utils
import torch.nn as nn
from PIL import Image
try:
import torchvision.transforms.v2 as T
except ImportError:
import torchvision.transforms as T
from .image_proj_models import MLPProjModel, MLPProjModelFaceId, ProjModelFaceIdPlus, Resampler, ImageProjModel
from .CrossAttentionPatch import Attn2Replace, ipadapter_attention
from .utils import (
encode_image_masked,
tensor_to_size,
contrast_adaptive_sharpening,
tensor_to_image,
image_to_tensor,
ipadapter_model_loader,
insightface_loader,
get_clipvision_file,
get_ipadapter_file,
get_lora_file,
)
# set the models directory
if "ipadapter" not in folder_paths.folder_names_and_paths:
current_paths = [os.path.join(folder_paths.models_dir, "ipadapter")]
else:
current_paths, _ = folder_paths.folder_names_and_paths["ipadapter"]
folder_paths.folder_names_and_paths["ipadapter"] = (current_paths, folder_paths.supported_pt_extensions)
WEIGHT_TYPES = ["linear", "ease in", "ease out", 'ease in-out', 'reverse in-out', 'weak input', 'weak output', 'weak middle', 'strong middle', 'style transfer', 'composition', 'strong style transfer']
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Main IPAdapter Class
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
class IPAdapter(nn.Module):
def __init__(self, ipadapter_model, cross_attention_dim=1024, output_cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4, is_sdxl=False, is_plus=False, is_full=False, is_faceid=False, is_portrait_unnorm=False):
super().__init__()
self.clip_embeddings_dim = clip_embeddings_dim
self.cross_attention_dim = cross_attention_dim
self.output_cross_attention_dim = output_cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.is_sdxl = is_sdxl
self.is_full = is_full
self.is_plus = is_plus
self.is_portrait_unnorm = is_portrait_unnorm
if is_faceid and not is_portrait_unnorm:
self.image_proj_model = self.init_proj_faceid()
elif is_full:
self.image_proj_model = self.init_proj_full()
elif is_plus or is_portrait_unnorm:
self.image_proj_model = self.init_proj_plus()
else:
self.image_proj_model = self.init_proj()
self.image_proj_model.load_state_dict(ipadapter_model["image_proj"])
self.ip_layers = To_KV(ipadapter_model["ip_adapter"])
def init_proj(self):
image_proj_model = ImageProjModel(
cross_attention_dim=self.cross_attention_dim,
clip_embeddings_dim=self.clip_embeddings_dim,
clip_extra_context_tokens=self.clip_extra_context_tokens
)
return image_proj_model
def init_proj_plus(self):
image_proj_model = Resampler(
dim=self.cross_attention_dim,
depth=4,
dim_head=64,
heads=20 if self.is_sdxl else 12,
num_queries=self.clip_extra_context_tokens,
embedding_dim=self.clip_embeddings_dim,
output_dim=self.output_cross_attention_dim,
ff_mult=4
)
return image_proj_model
def init_proj_full(self):
image_proj_model = MLPProjModel(
cross_attention_dim=self.cross_attention_dim,
clip_embeddings_dim=self.clip_embeddings_dim
)
return image_proj_model
def init_proj_faceid(self):
if self.is_plus:
image_proj_model = ProjModelFaceIdPlus(
cross_attention_dim=self.cross_attention_dim,
id_embeddings_dim=512,
clip_embeddings_dim=self.clip_embeddings_dim, # 1280,
num_tokens=self.clip_extra_context_tokens, # 4,
)
else:
image_proj_model = MLPProjModelFaceId(
cross_attention_dim=self.cross_attention_dim,
id_embeddings_dim=512,
num_tokens=self.clip_extra_context_tokens,
)
return image_proj_model
@torch.inference_mode()
def get_image_embeds(self, clip_embed, clip_embed_zeroed, batch_size):
torch_device = model_management.get_torch_device()
intermediate_device = model_management.intermediate_device()
if batch_size == 0:
batch_size = clip_embed.shape[0]
intermediate_device = torch_device
elif batch_size > clip_embed.shape[0]:
batch_size = clip_embed.shape[0]
clip_embed = torch.split(clip_embed, batch_size, dim=0)
clip_embed_zeroed = torch.split(clip_embed_zeroed, batch_size, dim=0)
image_prompt_embeds = []
uncond_image_prompt_embeds = []
for ce, cez in zip(clip_embed, clip_embed_zeroed):
image_prompt_embeds.append(self.image_proj_model(ce.to(torch_device)).to(intermediate_device))
uncond_image_prompt_embeds.append(self.image_proj_model(cez.to(torch_device)).to(intermediate_device))
del clip_embed, clip_embed_zeroed
image_prompt_embeds = torch.cat(image_prompt_embeds, dim=0)
uncond_image_prompt_embeds = torch.cat(uncond_image_prompt_embeds, dim=0)
torch.cuda.empty_cache()
#image_prompt_embeds = self.image_proj_model(clip_embed)
#uncond_image_prompt_embeds = self.image_proj_model(clip_embed_zeroed)
return image_prompt_embeds, uncond_image_prompt_embeds
@torch.inference_mode()
def get_image_embeds_faceid_plus(self, face_embed, clip_embed, s_scale, shortcut, batch_size):
torch_device = model_management.get_torch_device()
intermediate_device = model_management.intermediate_device()
if batch_size == 0:
batch_size = clip_embed.shape[0]
intermediate_device = torch_device
elif batch_size > clip_embed.shape[0]:
batch_size = clip_embed.shape[0]
face_embed_batch = torch.split(face_embed, batch_size, dim=0)
clip_embed_batch = torch.split(clip_embed, batch_size, dim=0)
embeds = []
for face_embed, clip_embed in zip(face_embed_batch, clip_embed_batch):
embeds.append(self.image_proj_model(face_embed.to(torch_device), clip_embed.to(torch_device), scale=s_scale, shortcut=shortcut).to(intermediate_device))
del face_embed_batch, clip_embed_batch
embeds = torch.cat(embeds, dim=0)
torch.cuda.empty_cache()
#embeds = self.image_proj_model(face_embed, clip_embed, scale=s_scale, shortcut=shortcut)
return embeds
class To_KV(nn.Module):
def __init__(self, state_dict):
super().__init__()
self.to_kvs = nn.ModuleDict()
for key, value in state_dict.items():
self.to_kvs[key.replace(".weight", "").replace(".", "_")] = nn.Linear(value.shape[1], value.shape[0], bias=False)
self.to_kvs[key.replace(".weight", "").replace(".", "_")].weight.data = value
def set_model_patch_replace(model, patch_kwargs, key):
to = model.model_options["transformer_options"].copy()
if "patches_replace" not in to:
to["patches_replace"] = {}
else:
to["patches_replace"] = to["patches_replace"].copy()
if "attn2" not in to["patches_replace"]:
to["patches_replace"]["attn2"] = {}
else:
to["patches_replace"]["attn2"] = to["patches_replace"]["attn2"].copy()
if key not in to["patches_replace"]["attn2"]:
to["patches_replace"]["attn2"][key] = Attn2Replace(ipadapter_attention, **patch_kwargs)
model.model_options["transformer_options"] = to
else:
to["patches_replace"]["attn2"][key].add(ipadapter_attention, **patch_kwargs)
def ipadapter_execute(model,
ipadapter,
clipvision,
insightface=None,
image=None,
image_composition=None,
image_negative=None,
weight=1.0,
weight_composition=1.0,
weight_faceidv2=None,
weight_type="linear",
combine_embeds="concat",
start_at=0.0,
end_at=1.0,
attn_mask=None,
pos_embed=None,
neg_embed=None,
unfold_batch=False,
embeds_scaling='V only',
layer_weights=None,
encode_batch_size=0,):
device = model_management.get_torch_device()
dtype = model_management.unet_dtype()
if dtype not in [torch.float32, torch.float16, torch.bfloat16]:
dtype = torch.float16 if model_management.should_use_fp16() else torch.float32
is_full = "proj.3.weight" in ipadapter["image_proj"]
is_portrait = "proj.2.weight" in ipadapter["image_proj"] and not "proj.3.weight" in ipadapter["image_proj"] and not "0.to_q_lora.down.weight" in ipadapter["ip_adapter"]
is_portrait_unnorm = "portraitunnorm" in ipadapter
is_faceid = is_portrait or "0.to_q_lora.down.weight" in ipadapter["ip_adapter"] or is_portrait_unnorm
is_plus = (is_full or "latents" in ipadapter["image_proj"] or "perceiver_resampler.proj_in.weight" in ipadapter["image_proj"]) and not is_portrait_unnorm
is_faceidv2 = "faceidplusv2" in ipadapter
output_cross_attention_dim = ipadapter["ip_adapter"]["1.to_k_ip.weight"].shape[1]
is_sdxl = output_cross_attention_dim == 2048
if is_faceid and not insightface:
raise Exception("insightface model is required for FaceID models")
if is_faceidv2:
weight_faceidv2 = weight_faceidv2 if weight_faceidv2 is not None else weight*2
cross_attention_dim = 1280 if (is_plus and is_sdxl and not is_faceid) or is_portrait_unnorm else output_cross_attention_dim
clip_extra_context_tokens = 16 if (is_plus and not is_faceid) or is_portrait or is_portrait_unnorm else 4
if image is not None and image.shape[1] != image.shape[2]:
print("\033[33mINFO: the IPAdapter reference image is not a square, CLIPImageProcessor will resize and crop it at the center. If the main focus of the picture is not in the middle the result might not be what you are expecting.\033[0m")
if isinstance(weight, list):
weight = torch.tensor(weight).unsqueeze(-1).unsqueeze(-1).to(device, dtype=dtype) if unfold_batch else weight[0]
# special weight types
if layer_weights is not None and layer_weights != '':
weight = { int(k): float(v)*weight for k, v in [x.split(":") for x in layer_weights.split(",")] }
weight_type = "linear"
elif weight_type.startswith("style transfer"):
weight = { 6:weight } if is_sdxl else { 0:weight, 1:weight, 2:weight, 3:weight, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight }
elif weight_type.startswith("composition"):
weight = { 3:weight } if is_sdxl else { 4:weight*0.25, 5:weight }
elif weight_type == "strong style transfer":
if is_sdxl:
weight = { 0:weight, 1:weight, 2:weight, 4:weight, 5:weight, 6:weight, 7:weight, 8:weight, 9:weight, 10:weight }
else:
weight = { 0:weight, 1:weight, 2:weight, 3:weight, 6:weight, 7:weight, 8:weight, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight }
elif weight_type == "style and composition":
if is_sdxl:
weight = { 3:weight_composition, 6:weight }
else:
weight = { 0:weight, 1:weight, 2:weight, 3:weight, 4:weight_composition*0.25, 5:weight_composition, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight }
elif weight_type == "strong style and composition":
if is_sdxl:
weight = { 0:weight, 1:weight, 2:weight, 3:weight_composition, 4:weight, 5:weight, 6:weight, 7:weight, 8:weight, 9:weight, 10:weight }
else:
weight = { 0:weight, 1:weight, 2:weight, 3:weight, 4:weight_composition, 5:weight_composition, 6:weight, 7:weight, 8:weight, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight }
img_comp_cond_embeds = None
face_cond_embeds = None
if is_faceid:
if insightface is None:
raise Exception("Insightface model is required for FaceID models")
from insightface.utils import face_align
insightface.det_model.input_size = (640,640) # reset the detection size
image_iface = tensor_to_image(image)
face_cond_embeds = []
image = []
for i in range(image_iface.shape[0]):
for size in [(size, size) for size in range(640, 256, -64)]:
insightface.det_model.input_size = size # TODO: hacky but seems to be working
face = insightface.get(image_iface[i])
if face:
if not is_portrait_unnorm:
face_cond_embeds.append(torch.from_numpy(face[0].normed_embedding).unsqueeze(0))
else:
face_cond_embeds.append(torch.from_numpy(face[0].embedding).unsqueeze(0))
image.append(image_to_tensor(face_align.norm_crop(image_iface[i], landmark=face[0].kps, image_size=256 if is_sdxl else 224)))
if 640 not in size:
print(f"\033[33mINFO: InsightFace detection resolution lowered to {size}.\033[0m")
break
else:
raise Exception('InsightFace: No face detected.')
face_cond_embeds = torch.stack(face_cond_embeds).to(device, dtype=dtype)
image = torch.stack(image)
del image_iface, face
if image is not None:
img_cond_embeds = encode_image_masked(clipvision, image, batch_size=encode_batch_size)
if image_composition is not None:
img_comp_cond_embeds = encode_image_masked(clipvision, image_composition, batch_size=encode_batch_size)
if is_plus:
img_cond_embeds = img_cond_embeds.penultimate_hidden_states
image_negative = image_negative if image_negative is not None else torch.zeros([1, 224, 224, 3])
img_uncond_embeds = encode_image_masked(clipvision, image_negative, batch_size=encode_batch_size).penultimate_hidden_states
if image_composition is not None:
img_comp_cond_embeds = img_comp_cond_embeds.penultimate_hidden_states
else:
img_cond_embeds = img_cond_embeds.image_embeds if not is_faceid else face_cond_embeds
if image_negative is not None and not is_faceid:
img_uncond_embeds = encode_image_masked(clipvision, image_negative, batch_size=encode_batch_size).image_embeds
else:
img_uncond_embeds = torch.zeros_like(img_cond_embeds)
if image_composition is not None:
img_comp_cond_embeds = img_comp_cond_embeds.image_embeds
del image_negative, image_composition
image = None if not is_faceid else image # if it's face_id we need the cropped face for later
elif pos_embed is not None:
img_cond_embeds = pos_embed
if neg_embed is not None:
img_uncond_embeds = neg_embed
else:
if is_plus:
img_uncond_embeds = encode_image_masked(clipvision, torch.zeros([1, 224, 224, 3])).penultimate_hidden_states
else:
img_uncond_embeds = torch.zeros_like(img_cond_embeds)
del pos_embed, neg_embed
else:
raise Exception("Images or Embeds are required")
# ensure that cond and uncond have the same batch size
img_uncond_embeds = tensor_to_size(img_uncond_embeds, img_cond_embeds.shape[0])
img_cond_embeds = img_cond_embeds.to(device, dtype=dtype)
img_uncond_embeds = img_uncond_embeds.to(device, dtype=dtype)
if img_comp_cond_embeds is not None:
img_comp_cond_embeds = img_comp_cond_embeds.to(device, dtype=dtype)
# combine the embeddings if needed
if combine_embeds != "concat" and img_cond_embeds.shape[0] > 1 and not unfold_batch:
if combine_embeds == "add":
img_cond_embeds = torch.sum(img_cond_embeds, dim=0).unsqueeze(0)
if face_cond_embeds is not None:
face_cond_embeds = torch.sum(face_cond_embeds, dim=0).unsqueeze(0)
if img_comp_cond_embeds is not None:
img_comp_cond_embeds = torch.sum(img_comp_cond_embeds, dim=0).unsqueeze(0)
elif combine_embeds == "subtract":
img_cond_embeds = img_cond_embeds[0] - torch.mean(img_cond_embeds[1:], dim=0)
img_cond_embeds = img_cond_embeds.unsqueeze(0)
if face_cond_embeds is not None:
face_cond_embeds = face_cond_embeds[0] - torch.mean(face_cond_embeds[1:], dim=0)
face_cond_embeds = face_cond_embeds.unsqueeze(0)
if img_comp_cond_embeds is not None:
img_comp_cond_embeds = img_comp_cond_embeds[0] - torch.mean(img_comp_cond_embeds[1:], dim=0)
img_comp_cond_embeds = img_comp_cond_embeds.unsqueeze(0)
elif combine_embeds == "average":
img_cond_embeds = torch.mean(img_cond_embeds, dim=0).unsqueeze(0)
if face_cond_embeds is not None:
face_cond_embeds = torch.mean(face_cond_embeds, dim=0).unsqueeze(0)
if img_comp_cond_embeds is not None:
img_comp_cond_embeds = torch.mean(img_comp_cond_embeds, dim=0).unsqueeze(0)
elif combine_embeds == "norm average":
img_cond_embeds = torch.mean(img_cond_embeds / torch.norm(img_cond_embeds, dim=0, keepdim=True), dim=0).unsqueeze(0)
if face_cond_embeds is not None:
face_cond_embeds = torch.mean(face_cond_embeds / torch.norm(face_cond_embeds, dim=0, keepdim=True), dim=0).unsqueeze(0)
if img_comp_cond_embeds is not None:
img_comp_cond_embeds = torch.mean(img_comp_cond_embeds / torch.norm(img_comp_cond_embeds, dim=0, keepdim=True), dim=0).unsqueeze(0)
img_uncond_embeds = img_uncond_embeds[0].unsqueeze(0) # TODO: better strategy for uncond could be to average them
if attn_mask is not None:
attn_mask = attn_mask.to(device, dtype=dtype)
ipa = IPAdapter(
ipadapter,
cross_attention_dim=cross_attention_dim,
output_cross_attention_dim=output_cross_attention_dim,
clip_embeddings_dim=img_cond_embeds.shape[-1],
clip_extra_context_tokens=clip_extra_context_tokens,
is_sdxl=is_sdxl,
is_plus=is_plus,
is_full=is_full,
is_faceid=is_faceid,
is_portrait_unnorm=is_portrait_unnorm,
).to(device, dtype=dtype)
if is_faceid and is_plus:
cond = ipa.get_image_embeds_faceid_plus(face_cond_embeds, img_cond_embeds, weight_faceidv2, is_faceidv2, encode_batch_size)
# TODO: check if noise helps with the uncond face embeds
uncond = ipa.get_image_embeds_faceid_plus(torch.zeros_like(face_cond_embeds), img_uncond_embeds, weight_faceidv2, is_faceidv2, encode_batch_size)
else:
cond, uncond = ipa.get_image_embeds(img_cond_embeds, img_uncond_embeds, encode_batch_size)
if img_comp_cond_embeds is not None:
cond_comp = ipa.get_image_embeds(img_comp_cond_embeds, img_uncond_embeds, encode_batch_size)[0]
cond = cond.to(device, dtype=dtype)
uncond = uncond.to(device, dtype=dtype)
cond_alt = None
if img_comp_cond_embeds is not None:
cond_alt = { 3: cond_comp.to(device, dtype=dtype) }
del img_cond_embeds, img_uncond_embeds, img_comp_cond_embeds, face_cond_embeds
sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at)
sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at)
patch_kwargs = {
"ipadapter": ipa,
"weight": weight,
"cond": cond,
"cond_alt": cond_alt,
"uncond": uncond,
"weight_type": weight_type,
"mask": attn_mask,
"sigma_start": sigma_start,
"sigma_end": sigma_end,
"unfold_batch": unfold_batch,
"embeds_scaling": embeds_scaling,
}
number = 0
if not is_sdxl:
for id in [1,2,4,5,7,8]: # id of input_blocks that have cross attention
patch_kwargs["module_key"] = str(number*2+1)
set_model_patch_replace(model, patch_kwargs, ("input", id))
number += 1
for id in [3,4,5,6,7,8,9,10,11]: # id of output_blocks that have cross attention
patch_kwargs["module_key"] = str(number*2+1)
set_model_patch_replace(model, patch_kwargs, ("output", id))
number += 1
patch_kwargs["module_key"] = str(number*2+1)
set_model_patch_replace(model, patch_kwargs, ("middle", 0))
else:
for id in [4,5,7,8]: # id of input_blocks that have cross attention
block_indices = range(2) if id in [4, 5] else range(10) # transformer_depth
for index in block_indices:
patch_kwargs["module_key"] = str(number*2+1)
set_model_patch_replace(model, patch_kwargs, ("input", id, index))
number += 1
for id in range(6): # id of output_blocks that have cross attention
block_indices = range(2) if id in [3, 4, 5] else range(10) # transformer_depth
for index in block_indices:
patch_kwargs["module_key"] = str(number*2+1)
set_model_patch_replace(model, patch_kwargs, ("output", id, index))
number += 1
for index in range(10):
patch_kwargs["module_key"] = str(number*2+1)
set_model_patch_replace(model, patch_kwargs, ("middle", 0, index))
number += 1
return (model, image)
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Loaders
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
class IPAdapterUnifiedLoader:
def __init__(self):
self.lora = None
self.clipvision = { "file": None, "model": None }
self.ipadapter = { "file": None, "model": None }
self.insightface = { "provider": None, "model": None }
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL", ),
"preset": (['LIGHT - SD1.5 only (low strength)', 'STANDARD (medium strength)', 'VIT-G (medium strength)', 'PLUS (high strength)', 'PLUS FACE (portraits)', 'FULL FACE - SD1.5 only (portraits stronger)'], ),
},
"optional": {
"ipadapter": ("IPADAPTER", ),
}}
RETURN_TYPES = ("MODEL", "IPADAPTER", )
RETURN_NAMES = ("model", "ipadapter", )
FUNCTION = "load_models"
CATEGORY = "ipadapter"
def load_models(self, model, preset, lora_strength=0.0, provider="CPU", ipadapter=None):
pipeline = { "clipvision": { 'file': None, 'model': None }, "ipadapter": { 'file': None, 'model': None }, "insightface": { 'provider': None, 'model': None } }
if ipadapter is not None:
pipeline = ipadapter
# 1. Load the clipvision model
clipvision_file = get_clipvision_file(preset)
if clipvision_file is None:
raise Exception("ClipVision model not found.")
if clipvision_file != self.clipvision['file']:
if clipvision_file != pipeline['clipvision']['file']:
self.clipvision['file'] = clipvision_file
self.clipvision['model'] = load_clip_vision(clipvision_file)
print(f"\033[33mINFO: Clip Vision model loaded from {clipvision_file}\033[0m")
else:
self.clipvision = pipeline['clipvision']
# 2. Load the ipadapter model
is_sdxl = isinstance(model.model, (comfy.model_base.SDXL, comfy.model_base.SDXLRefiner, comfy.model_base.SDXL_instructpix2pix))
ipadapter_file, is_insightface, lora_pattern = get_ipadapter_file(preset, is_sdxl)
if ipadapter_file is None:
raise Exception("IPAdapter model not found.")
if ipadapter_file != self.ipadapter['file']:
if pipeline['ipadapter']['file'] != ipadapter_file:
self.ipadapter['file'] = ipadapter_file
self.ipadapter['model'] = ipadapter_model_loader(ipadapter_file)
print(f"\033[33mINFO: IPAdapter model loaded from {ipadapter_file}\033[0m")
else:
self.ipadapter = pipeline['ipadapter']
# 3. Load the lora model if needed
if lora_pattern is not None:
lora_file = get_lora_file(lora_pattern)
lora_model = None
if lora_file is None:
raise Exception("LoRA model not found.")
if self.lora is not None:
if lora_file == self.lora['file']:
lora_model = self.lora['model']
else:
self.lora = None
torch.cuda.empty_cache()
if lora_model is None:
lora_model = comfy.utils.load_torch_file(lora_file, safe_load=True)
self.lora = { 'file': lora_file, 'model': lora_model }
print(f"\033[33mINFO: LoRA model loaded from {lora_file}\033[0m")
if lora_strength > 0:
model, _ = load_lora_for_models(model, None, lora_model, lora_strength, 0)
# 4. Load the insightface model if needed
if is_insightface:
if provider != self.insightface['provider']:
if pipeline['insightface']['provider'] != provider:
self.insightface['provider'] = provider
self.insightface['model'] = insightface_loader(provider)
print(f"\033[33mINFO: InsightFace model loaded with {provider} provider\033[0m")
else:
self.insightface = pipeline['insightface']
return (model, { 'clipvision': self.clipvision, 'ipadapter': self.ipadapter, 'insightface': self.insightface }, )
class IPAdapterUnifiedLoaderFaceID(IPAdapterUnifiedLoader):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL", ),
"preset": (['FACEID', 'FACEID PLUS - SD1.5 only', 'FACEID PLUS V2', 'FACEID PORTRAIT (style transfer)', 'FACEID PORTRAIT UNNORM - SDXL only (strong)'], ),
"lora_strength": ("FLOAT", { "default": 0.6, "min": 0, "max": 1, "step": 0.01 }),
"provider": (["CPU", "CUDA", "ROCM", "DirectML", "OpenVINO", "CoreML"], ),
},
"optional": {
"ipadapter": ("IPADAPTER", ),
}}
RETURN_NAMES = ("MODEL", "ipadapter", )
CATEGORY = "ipadapter/faceid"
class IPAdapterUnifiedLoaderCommunity(IPAdapterUnifiedLoader):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL", ),
"preset": (['Composition',], ),
},
"optional": {
"ipadapter": ("IPADAPTER", ),
}}
CATEGORY = "ipadapter/loaders"
class IPAdapterModelLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "ipadapter_file": (folder_paths.get_filename_list("ipadapter"), )}}
RETURN_TYPES = ("IPADAPTER",)
FUNCTION = "load_ipadapter_model"
CATEGORY = "ipadapter/loaders"
def load_ipadapter_model(self, ipadapter_file):
ipadapter_file = folder_paths.get_full_path("ipadapter", ipadapter_file)
return (ipadapter_model_loader(ipadapter_file),)
class IPAdapterInsightFaceLoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"provider": (["CPU", "CUDA", "ROCM"], ),
},
}
RETURN_TYPES = ("INSIGHTFACE",)
FUNCTION = "load_insightface"
CATEGORY = "ipadapter/loaders"
def load_insightface(self, provider):
return (insightface_loader(provider),)
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Main Apply Nodes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
class IPAdapterSimple:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image": ("IMAGE",),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"weight_type": (['standard', 'prompt is more important', 'style transfer'], ),
},
"optional": {
"attn_mask": ("MASK",),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply_ipadapter"
CATEGORY = "ipadapter"
def apply_ipadapter(self, model, ipadapter, image, weight, start_at, end_at, weight_type, attn_mask=None):
if weight_type.startswith("style"):
weight_type = "style transfer"
elif weight_type == "prompt is more important":
weight_type = "ease out"
else:
weight_type = "linear"
ipa_args = {
"image": image,
"weight": weight,
"start_at": start_at,
"end_at": end_at,
"attn_mask": attn_mask,
"weight_type": weight_type,
"insightface": ipadapter['insightface']['model'] if 'insightface' in ipadapter else None,
}
if 'ipadapter' not in ipadapter:
raise Exception("IPAdapter model not present in the pipeline. Please load the models with the IPAdapterUnifiedLoader node.")
if 'clipvision' not in ipadapter:
raise Exception("CLIPVision model not present in the pipeline. Please load the models with the IPAdapterUnifiedLoader node.")
return ipadapter_execute(model.clone(), ipadapter['ipadapter']['model'], ipadapter['clipvision']['model'], **ipa_args)
class IPAdapterAdvanced:
def __init__(self):
self.unfold_batch = False
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image": ("IMAGE",),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }),
"weight_type": (WEIGHT_TYPES, ),
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
},
"optional": {
"image_negative": ("IMAGE",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply_ipadapter"
CATEGORY = "ipadapter"
def apply_ipadapter(self, model, ipadapter, start_at=0.0, end_at=1.0, weight=1.0, weight_style=1.0, weight_composition=1.0, expand_style=False, weight_type="linear", combine_embeds="concat", weight_faceidv2=None, image=None, image_style=None, image_composition=None, image_negative=None, clip_vision=None, attn_mask=None, insightface=None, embeds_scaling='V only', layer_weights=None, ipadapter_params=None, encode_batch_size=0):
is_sdxl = isinstance(model.model, (comfy.model_base.SDXL, comfy.model_base.SDXLRefiner, comfy.model_base.SDXL_instructpix2pix))
if 'ipadapter' in ipadapter:
ipadapter_model = ipadapter['ipadapter']['model']
clip_vision = clip_vision if clip_vision is not None else ipadapter['clipvision']['model']
else:
ipadapter_model = ipadapter
if clip_vision is None:
raise Exception("Missing CLIPVision model.")
if image_style is not None: # we are doing style + composition transfer
if not is_sdxl:
raise Exception("Style + Composition transfer is only available for SDXL models at the moment.") # TODO: check feasibility for SD1.5 models
image = image_style
weight = weight_style
if image_composition is None:
image_composition = image_style
weight_type = "strong style and composition" if expand_style else "style and composition"
if ipadapter_params is not None: # we are doing batch processing
image = ipadapter_params['image']
attn_mask = ipadapter_params['attn_mask']
weight = ipadapter_params['weight']
weight_type = ipadapter_params['weight_type']
start_at = ipadapter_params['start_at']
end_at = ipadapter_params['end_at']
else:
# at this point weight can be a list from the batch-weight or a single float
weight = [weight]
image = image if isinstance(image, list) else [image]
work_model = model.clone()
for i in range(len(image)):
if image[i] is None:
continue
ipa_args = {
"image": image[i],
"image_composition": image_composition,
"image_negative": image_negative,
"weight": weight[i],
"weight_composition": weight_composition,
"weight_faceidv2": weight_faceidv2,
"weight_type": weight_type if not isinstance(weight_type, list) else weight_type[i],
"combine_embeds": combine_embeds,
"start_at": start_at if not isinstance(start_at, list) else start_at[i],
"end_at": end_at if not isinstance(end_at, list) else end_at[i],
"attn_mask": attn_mask if not isinstance(attn_mask, list) else attn_mask[i],
"unfold_batch": self.unfold_batch,
"embeds_scaling": embeds_scaling,
"insightface": insightface if insightface is not None else ipadapter['insightface']['model'] if 'insightface' in ipadapter else None,
"layer_weights": layer_weights,
"encode_batch_size": encode_batch_size,
}
work_model, face_image = ipadapter_execute(work_model, ipadapter_model, clip_vision, **ipa_args)
del ipadapter
return (work_model, face_image, )
class IPAdapterBatch(IPAdapterAdvanced):
def __init__(self):
self.unfold_batch = True
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image": ("IMAGE",),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }),
"weight_type": (WEIGHT_TYPES, ),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
"encode_batch_size": ("INT", { "default": 0, "min": 0, "max": 4096 }),
},
"optional": {
"image_negative": ("IMAGE",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
}
}
class IPAdapterStyleComposition(IPAdapterAdvanced):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image_style": ("IMAGE",),
"image_composition": ("IMAGE",),
"weight_style": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }),
"weight_composition": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }),
"expand_style": ("BOOLEAN", { "default": False }),
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"], {"default": "average"}),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
},
"optional": {
"image_negative": ("IMAGE",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
}
}
CATEGORY = "ipadapter/style_composition"
class IPAdapterStyleCompositionBatch(IPAdapterStyleComposition):
def __init__(self):
self.unfold_batch = True
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image_style": ("IMAGE",),
"image_composition": ("IMAGE",),
"weight_style": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }),
"weight_composition": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }),
"expand_style": ("BOOLEAN", { "default": False }),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
},
"optional": {
"image_negative": ("IMAGE",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
}
}
class IPAdapterFaceID(IPAdapterAdvanced):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image": ("IMAGE",),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
"weight_faceidv2": ("FLOAT", { "default": 1.0, "min": -1, "max": 5.0, "step": 0.05 }),
"weight_type": (WEIGHT_TYPES, ),
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
},
"optional": {
"image_negative": ("IMAGE",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
"insightface": ("INSIGHTFACE",),
}
}
CATEGORY = "ipadapter/faceid"
RETURN_TYPES = ("MODEL","IMAGE",)
RETURN_NAMES = ("MODEL", "face_image", )
class IPAAdapterFaceIDBatch(IPAdapterFaceID):
def __init__(self):
self.unfold_batch = True
class IPAdapterTiled:
def __init__(self):
self.unfold_batch = False
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image": ("IMAGE",),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
"weight_type": (WEIGHT_TYPES, ),
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"sharpening": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
},
"optional": {
"image_negative": ("IMAGE",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
}
}
RETURN_TYPES = ("MODEL", "IMAGE", "MASK", )
RETURN_NAMES = ("MODEL", "tiles", "masks", )
FUNCTION = "apply_tiled"
CATEGORY = "ipadapter/tiled"
def apply_tiled(self, model, ipadapter, image, weight, weight_type, start_at, end_at, sharpening, combine_embeds="concat", image_negative=None, attn_mask=None, clip_vision=None, embeds_scaling='V only', encode_batch_size=0):
# 1. Select the models
if 'ipadapter' in ipadapter:
ipadapter_model = ipadapter['ipadapter']['model']
clip_vision = clip_vision if clip_vision is not None else ipadapter['clipvision']['model']
else:
ipadapter_model = ipadapter
clip_vision = clip_vision
if clip_vision is None:
raise Exception("Missing CLIPVision model.")
del ipadapter
# 2. Extract the tiles
tile_size = 256 # I'm using 256 instead of 224 as it is more likely divisible by the latent size, it will be downscaled to 224 by the clip vision encoder
_, oh, ow, _ = image.shape
if attn_mask is None:
attn_mask = torch.ones([1, oh, ow], dtype=image.dtype, device=image.device)
image = image.permute([0,3,1,2])
attn_mask = attn_mask.unsqueeze(1)
# the mask should have the same proportions as the reference image and the latent
attn_mask = T.Resize((oh, ow), interpolation=T.InterpolationMode.BICUBIC, antialias=True)(attn_mask)
# if the image is almost a square, we crop it to a square
if oh / ow > 0.75 and oh / ow < 1.33:
# crop the image to a square
image = T.CenterCrop(min(oh, ow))(image)
resize = (tile_size*2, tile_size*2)
attn_mask = T.CenterCrop(min(oh, ow))(attn_mask)
# otherwise resize the smallest side and the other proportionally
else:
resize = (int(tile_size * ow / oh), tile_size) if oh < ow else (tile_size, int(tile_size * oh / ow))
# using PIL for better results
imgs = []
for img in image:
img = T.ToPILImage()(img)
img = img.resize(resize, resample=Image.Resampling['LANCZOS'])
imgs.append(T.ToTensor()(img))
image = torch.stack(imgs)
del imgs, img
# we don't need a high quality resize for the mask
attn_mask = T.Resize(resize[::-1], interpolation=T.InterpolationMode.BICUBIC, antialias=True)(attn_mask)
# we allow a maximum of 4 tiles
if oh / ow > 4 or oh / ow < 0.25:
crop = (tile_size, tile_size*4) if oh < ow else (tile_size*4, tile_size)
image = T.CenterCrop(crop)(image)
attn_mask = T.CenterCrop(crop)(attn_mask)
attn_mask = attn_mask.squeeze(1)
if sharpening > 0:
image = contrast_adaptive_sharpening(image, sharpening)
image = image.permute([0,2,3,1])
_, oh, ow, _ = image.shape
# find the number of tiles for each side
tiles_x = math.ceil(ow / tile_size)
tiles_y = math.ceil(oh / tile_size)
overlap_x = max(0, (tiles_x * tile_size - ow) / (tiles_x - 1 if tiles_x > 1 else 1))
overlap_y = max(0, (tiles_y * tile_size - oh) / (tiles_y - 1 if tiles_y > 1 else 1))
base_mask = torch.zeros([attn_mask.shape[0], oh, ow], dtype=image.dtype, device=image.device)
# extract all the tiles from the image and create the masks
tiles = []
masks = []
for y in range(tiles_y):
for x in range(tiles_x):
start_x = int(x * (tile_size - overlap_x))
start_y = int(y * (tile_size - overlap_y))
tiles.append(image[:, start_y:start_y+tile_size, start_x:start_x+tile_size, :])
mask = base_mask.clone()
mask[:, start_y:start_y+tile_size, start_x:start_x+tile_size] = attn_mask[:, start_y:start_y+tile_size, start_x:start_x+tile_size]
masks.append(mask)
del mask
# 3. Apply the ipadapter to each group of tiles
model = model.clone()
for i in range(len(tiles)):
ipa_args = {
"image": tiles[i],
"image_negative": image_negative,
"weight": weight,
"weight_type": weight_type,
"combine_embeds": combine_embeds,
"start_at": start_at,
"end_at": end_at,
"attn_mask": masks[i],
"unfold_batch": self.unfold_batch,
"embeds_scaling": embeds_scaling,