-
Notifications
You must be signed in to change notification settings - Fork 284
/
Copy path05_BernBeta.py
112 lines (104 loc) · 4.16 KB
/
05_BernBeta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""
Inferring a binomial proportion via exact mathematical analysis.
"""
import sys
import numpy as np
from scipy.stats import beta
from scipy.special import beta as beta_func
import matplotlib.pyplot as plt
plt.style.use('seaborn-darkgrid')
from HDIofICDF import *
def bern_beta(prior_shape, data_vec, cred_mass=0.95):
"""Bayesian updating for Bernoulli likelihood and beta prior.
Input arguments:
prior_shape
vector of parameter values for the prior beta distribution.
data_vec
vector of 1's and 0's.
cred_mass
the probability mass of the HDI.
Output:
post_shape
vector of parameter values for the posterior beta distribution.
Graphics:
Creates a three-panel graph of prior, likelihood, and posterior
with highest posterior density interval.
Example of use:
post_shape = bern_beta(prior_shape=[1,1] , data_vec=[1,0,0,1,1])"""
# Check for errors in input arguments:
if len(prior_shape) != 2:
sys.exit('prior_shape must have two components.')
if any([i < 0 for i in prior_shape]):
sys.exit('prior_shape components must be positive.')
if any([i != 0 and i != 1 for i in data_vec]):
sys.exit('data_vec must be a vector of 1s and 0s.')
if cred_mass <= 0 or cred_mass >= 1.0:
sys.exit('cred_mass must be between 0 and 1.')
# Rename the prior shape parameters, for convenience:
a = prior_shape[0]
b = prior_shape[1]
# Create summary values of the data:
z = sum(data_vec[data_vec == 1]) # number of 1's in data_vec
N = len(data_vec) # number of flips in data_vec
# Compute the posterior shape parameters:
post_shape = [a+z, b+N-z]
# Compute the evidence, p(D):
p_data = beta_func(z+a, N-z+b)/beta_func(a, b)
# Construct grid of theta values, used for graphing.
bin_width = 0.005 # Arbitrary small value for comb on theta.
theta = np.arange(bin_width/2, 1-(bin_width/2)+bin_width, bin_width)
# Compute the prior at each value of theta.
p_theta = beta.pdf(theta, a, b)
# Compute the likelihood of the data at each value of theta.
p_data_given_theta = theta**z * (1-theta)**(N-z)
# Compute the posterior at each value of theta.
post_a = a + z
post_b = b+N-z
p_theta_given_data = beta.pdf(theta, a+z, b+N-z)
# Determine the limits of the highest density interval
intervals = HDIofICDF(beta, cred_mass, a=post_shape[0], b=post_shape[1])
# Plot the results.
plt.figure(figsize=(12, 12))
plt.subplots_adjust(hspace=0.7)
# Plot the prior.
locx = 0.05
plt.subplot(3, 1, 1)
plt.plot(theta, p_theta)
plt.xlim(0, 1)
plt.ylim(0, np.max(p_theta)*1.2)
plt.xlabel(r'$\theta$')
plt.ylabel(r'$P(\theta)$')
plt.title('Prior')
plt.text(locx, np.max(p_theta)/2, r'beta($\theta$;%s,%s)' % (a, b))
# Plot the likelihood:
plt.subplot(3, 1, 2)
plt.plot(theta, p_data_given_theta)
plt.xlim(0, 1)
plt.ylim(0, np.max(p_data_given_theta)*1.2)
plt.xlabel(r'$\theta$')
plt.ylabel(r'$P(D|\theta)$')
plt.title('Likelihood')
plt.text(locx, np.max(p_data_given_theta)/2, 'Data: z=%s, N=%s' % (z, N))
# Plot the posterior:
plt.subplot(3, 1, 3)
plt.plot(theta, p_theta_given_data)
plt.xlim(0, 1)
plt.ylim(0, np.max(p_theta_given_data)*1.2)
plt.xlabel(r'$\theta$')
plt.ylabel(r'$P(\theta|D)$')
plt.title('Posterior')
locy = np.linspace(0, np.max(p_theta_given_data), 5)
plt.text(locx, locy[1], r'beta($\theta$;%s,%s)' % (post_a, post_b))
plt.text(locx, locy[2], 'P(D) = %g' % p_data)
# Plot the HDI
plt.text(locx, locy[3],
'Intervals = %.3f - %.3f' % (intervals[0], intervals[1]))
plt.fill_between(theta, 0, p_theta_given_data,
where=np.logical_and(theta > intervals[0],
theta < intervals[1]),
color='blue', alpha=0.3)
return intervals
data_vec = np.repeat([1, 0], [11, 3]) # 11 heads, 3 tail
intervals = bern_beta(prior_shape=[100, 100], data_vec=data_vec)
plt.savefig('Figure_5.2.png')
plt.show()