-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathyoloface.py
210 lines (177 loc) · 7.91 KB
/
yoloface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import serial
import time
import re
import argparse
import sys
import os
import numpy as np
from utils import *
##############################아두이노 세팅#########################
import serial # serial, pyserial 필요
# Set a PORT Number & baud rate
#PORT = 'COM3'
#BaudRate = 57600
#ARD= serial.Serial(PORT,BaudRate)
#####################################################################
parser = argparse.ArgumentParser()
parser.add_argument('--model-cfg', type=str, default='./cfg/yolov3-face.cfg',
help='path to config file')
parser.add_argument('--model-weights', type=str,
default='./model-weights/yolov3-wider_16000.weights',
help='path to weights of model')
parser.add_argument('--image', type=str, default='', #args.image로 접근 type: str
help='path to image file')
parser.add_argument('--video', type=str, default='',
help='path to video file')
parser.add_argument('--src', type=int, default=1,
help='source of the camera')
parser.add_argument('--output-dir', type=str, default='outputs/',
help='path to the output directory')
args = parser.parse_args()
#####################################################################
# print the arguments
print('----- info -----')
print('[i] The config file: ', args.model_cfg)
print('[i] The weights of model file: ', args.model_weights)
print('[i] Path to image file: ', args.image)
print('[i] Path to video file: ', args.video)
print('###########################################################\n')
print(args)
# check outputs directory
if not os.path.exists(args.output_dir):
print('==> Creating the {} directory...'.format(args.output_dir))
os.makedirs(args.output_dir)
else:
print('==> Skipping create the {} directory...'.format(args.output_dir))
# Give the configuration and weight files for the model and load the network
# using them.
net = cv2.dnn.readNetFromDarknet(args.model_cfg, args.model_weights)
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
py_serial = serial.Serial(
# Window
port='COM3',
# 보드 레이트 (통신 속도)
baudrate=115200, # 38400도 가능
)
wind_name = 'face detection using YOLOv3'
cv2.namedWindow(wind_name, cv2.WINDOW_NORMAL)
output_file = ''
#print(args.image)
if args.image:
if not os.path.isfile(args.image):
print("[!] ==> Input image file {} doesn't exist".format(args.image))
sys.exit(1)
cap = cv2.VideoCapture(args.image)
cap = cv2.rotate(cap, cv2.ROTATE_90_COUNTERCLOCKWISE)
output_file = args.image[:-4].rsplit('/')[-1] + '_yoloface.jpg'
elif args.video:
if not os.path.isfile(args.video):
print("[!] ==> Input video file {} doesn't exist".format(args.video))
sys.exit(1)
cap = cv2.VideoCapture(args.video)
cap = cv2.rotate(cap, cv2.ROTATE_90_COUNTERCLOCKWISE)
output_file = args.video[:-4].rsplit('/')[-1] + '_yoloface.avi'
else:
# Get data from the camera
cap = cv2.VideoCapture(args.src)
# cap = cv2.flip(cap,1)
# cap = cv2.rotate(np.array(cap).copy(), cv2.ROTATE_90_COUNTERCLOCKWISE)
# Get the video writer initialized to save the output video
if not args.image:
video_writer = cv2.VideoWriter(os.path.join(args.output_dir, output_file),
cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'),
cap.get(cv2.CAP_PROP_FPS), (
round(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
round(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
while True:
has_frame, frame = cap.read()
frame = cv2.flip(frame,1)
frame = cv2.rotate(frame, cv2.ROTATE_90_CLOCKWISE)
# Stop the program if reached end of video
if not has_frame:
print('[i] ==> Done processing!!!')
print('[i] ==> Output file is stored at', os.path.join(args.output_dir, output_file))
cv2.waitKey(1000)
break
# Create a 4D blob from a frame.
blob = cv2.dnn.blobFromImage(frame, 1 / 255, (IMG_WIDTH, IMG_HEIGHT),
[0, 0, 0], 1, crop=False)
# Sets the input to the network
net.setInput(blob)
# Runs the forward pass to get output of the output layers
outs = net.forward(get_outputs_names(net))
# Remove the bounding boxes with low confidence
faces = post_process(frame, outs, CONF_THRESHOLD, NMS_THRESHOLD)
print('[i] ==> # detected faces: {}'.format(len(faces)))
print('#' * 60)
# initialize the set of information we'll displaying on the frame
info = [
('number of faces detected', '{}'.format(len(faces)))
]
# for (i, (txt, val)) in enumerate(info):
# text = '{}: {}'.format(txt, val)
# cv2.putText(frame, text, (10, (i * 20) + 20),
# cv2.FONT_HERSHEY_SIMPLEX, 0.7, COLOR_RED, 2)
#################################################################################################### 추가한 코드
if centers_x != [] and centers_y != []:
fw = frame.shape[1]
fh = frame.shape[0]
fw_center = fw // 2
fh_center = fh // 2
print([(x, y) for x, y in zip(centers_x, centers_y)])
center_avg = get_center_avg()
print(f'Average of Center: ({center_avg[0]}, {center_avg[1]})')
'''
(0,0) (1,0)
center
(0,1) (1,1)
'''
#direction_x = 1 if fw_center < center_avg[0] else 0 # 1 if 우 else 0
direction_y = 1 if fh_center < center_avg[1] else 0 # 1 if 하 else 0
#print(str(direction_x) + str(direction_y))
print(str(direction_y))
msg = str(direction_y)
commend = msg
py_serial.write(commend.encode())
time.sleep(0.1)
if py_serial.readable():
# 들어온 값이 있으면 값을 한 줄 읽음 (BYTE 단위로 받은 상태)
# BYTE 단위로 받은 response 모습 : b'\xec\x97\x86\xec\x9d\x8c\r\n'
response = py_serial.readline()
# 디코딩 후, 출력 (가장 끝의 \n을 없애주기위해 슬라이싱 사용)
response = (response[:len(response)-1].decode())
print(response)
info = [
('number of faces detected', '{}'.format(len(faces)), response, centers_x, centers_y)
]
for (i, (txt, val, response_,centers_x_, centers_y_)) in enumerate(info):
text = '{}: {}, camera degree: {}'.format(txt, val, response_)
cv2.putText(frame, text, (10, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLOR_BLUE, 2)
for (i, (txt, val, response_,centers_x_, centers_y_)) in enumerate(info):
text = 'object center: {},{}'.format(centers_x_, centers_y_)
cv2.putText(frame, text, (10, 50),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLOR_BLUE, 2)
msg = msg.encode('utf-8')
#ARD.write(msg) # 아두이노로 전송
#cv2.line(frame, (5,5), (5,5), COLOR_YELLOW, 5)
cv2.line(frame, (center_avg[0], 0), (center_avg[0], fh), COLOR_BLUE, 1)
cv2.line(frame, (0, center_avg[1]), (fw, center_avg[1]), COLOR_BLUE, 1)
centers_x.clear()
centers_y.clear()
#################################################################################################### 추가한 코드
# Save the output video to file
if args.image:
cv2.imwrite(os.path.join(args.output_dir, output_file), frame.astype(np.uint8))
else:
video_writer.write(frame.astype(np.uint8))
cv2.imshow(wind_name, frame)
key = cv2.waitKey(1)
if key == 27 or key == ord('q'):
print('[i] ==> Interrupted by user!')
break
cap.release()
cv2.destroyAllWindows()
print('==> All done!')
print('***********************************************************')