-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblending.py
101 lines (92 loc) · 5.54 KB
/
blending.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import torch
from sph_related.misc_differentiable import compute_bary_new, point_triangle_distance
# This works with multi-GPU
class diff_render_blend(torch.nn.Module):
def __init__(self, znear=0.01, zfar=2.5, sigma=1e-4, eps=1e-10, sgrid_obj=None, radius=2.0, max_hits=4):
super().__init__()
if sgrid_obj is None:
print("Please provide an sgrid object")
exit()
# self.sgrid_torch = sgrid_obj/torch.linalg.norm(sgrid_obj, dim=1, keepdim=True) * radius
self.register_buffer("sgrid_torch", sgrid_obj/torch.linalg.norm(sgrid_obj, dim=1, keepdim=True) * radius, persistent=False)
sgrid_ortho = sgrid_obj * 1.0
# make a copy
ortho_mask = sgrid_ortho[:,1] > 0.0
sgrid_ortho[ortho_mask, 1] = 2.0
sgrid_ortho[~ortho_mask, 1] = -2.0
self.register_buffer("ortho_torch", sgrid_ortho, persistent=False)
self.sgrid_shape = list(self.sgrid_torch.shape)[:-1]
self.znear = znear
self.zfar = zfar
self.sigma = sigma
self.eps = eps
self.max_hits = max_hits
def forward(self, input_stuff):
# input_stuff_list = input_stuff.to_data_list()
# input_stuff_list = [input_stuff]
input_stuff_list = input_stuff
# We split the input into the original chunks
output_list = []
cur_device = self.sgrid_torch.device
hits = self.max_hits
sgrid_shape = self.sgrid_shape
depth_collector = []
silhouettes_collector = []
for data_idx in range(len(input_stuff_list)):
silhouettes_container = []
total_out_depths = []
cur_data = input_stuff_list[data_idx]
verts_list = cur_data.verts_in
faces_list = cur_data.tri_in
depth_return_container = torch.zeros([2] + sgrid_shape, dtype=torch.float).to(device=cur_device, non_blocking=True)+2.0
cur_offset = 0
for projection_type in ["radial", "ortho"]:
# compute the differentiable depth
hits_radial_pos_list = getattr(cur_data, "{}_depth_loc".format(projection_type))
hits_radial_index_tri_list = getattr(cur_data, "{}_depth_idx_tri".format(projection_type))
hits_radial_index_index_ray = getattr(cur_data, "{}_depth_idx_ray".format(projection_type))
input_xyz = hits_radial_pos_list
index_tri = hits_radial_index_tri_list
index_ray = hits_radial_index_index_ray
x_b, y_b, z_b = compute_bary_new(input_xyz, index_tri, verts_list, faces_list)
bary_weights = torch.stack([x_b, y_b, z_b], 1)[:, :, None]
new_loc = torch.sum(bary_weights * verts_list[faces_list[hits_radial_index_tri_list]], 1)
if projection_type == "radial":
z_dist = torch.linalg.norm(self.sgrid_torch[index_ray] - new_loc, dim=1)
else:
z_dist = torch.linalg.norm(self.ortho_torch[index_ray] - new_loc, dim=1)
depth_return_container[cur_offset][hits_radial_index_index_ray] = z_dist
cur_offset += 1
for projection_type in ["radial", "ortho"]:
# for projection_type in ["radial"]:
hits_radial_pos_list = getattr(cur_data, "{}_prob_loc".format(projection_type))
hits_radial_index_tri_list = getattr(cur_data, "{}_prob_idx_tri".format(projection_type))
hits_radial_index_index_ray = getattr(cur_data, "{}_prob_idx_ray".format(projection_type))
index_ray2 = getattr(cur_data, "{}_depth_idx_ray".format(projection_type))
slices_radial_idx = getattr(cur_data, "{}_offsets".format(projection_type))
# xy_dist_radial_container = -torch.ones([hits] + sgrid_shape, dtype=torch.float).to(device=cur_device, non_blocking=True)*0.0
xy_dist_radial_container = torch.zeros([hits] + sgrid_shape, dtype=torch.float).to(device=cur_device, non_blocking=True) * 0.0
mask_radial = torch.zeros([hits] + sgrid_shape, dtype=torch.float).to(device=cur_device, non_blocking=True)
trig_coords = verts_list[faces_list[hits_radial_index_tri_list]]
face_trig_dist = point_triangle_distance(hits_radial_pos_list, trig_coords[:, 0], trig_coords[:, 1], trig_coords[:, 2])
# get rid of the last dimension which is 1
for k_hit_idx in range(len(slices_radial_idx)-1):
start = slices_radial_idx[k_hit_idx]
end = slices_radial_idx[k_hit_idx + 1]
if end - start == 0:
continue
hit_rays = hits_radial_index_index_ray[start:end]
mask_radial[k_hit_idx][hit_rays] = 1.0
xy_dist_radial_container[k_hit_idx][hit_rays] = face_trig_dist[start:end]
prob_map = torch.exp(-xy_dist_radial_container/5e-5) * mask_radial
alpha = torch.prod((1.0 - prob_map), dim=0)
silhouette = 1.0 - alpha
silhouette[index_ray2] = 1.0
silhouettes_container.append(silhouette)
silhouettes_return_container = torch.stack(silhouettes_container, dim=0)
depth_collector.append(depth_return_container)
silhouettes_collector.append(silhouettes_return_container)
batched_depth = torch.stack(depth_collector, dim=0)
batched_silhouette = torch.stack(silhouettes_collector, dim=0)
final_out = torch.cat((batched_depth, batched_silhouette), dim=1)
return final_out