-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathioi_utils.py
978 lines (878 loc) · 35.2 KB
/
ioi_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
import os
import matplotlib.pyplot as plt
from collections import OrderedDict
from functools import partial
import altair as alt
alt.data_transformers.disable_max_rows()
from torch.utils.data import Dataset, DataLoader
import math
import inspect
from tqdm import tqdm
from collections import defaultdict
import functools
from collections import OrderedDict
from abc import ABC, abstractmethod
import json
from pathlib import Path
import random
from typing import Tuple, List, Sequence, Union, Any, Optional, Literal, Iterable, Callable, Dict
import typing
import seaborn as sns
import matplotlib.pyplot as plt
sns.set_context('talk')
sns.set_style('darkgrid')
sns.set_palette('muted')
import numpy as np
import pandas as pd
import torch
from torch import Tensor
from torch.nn import Parameter
from torch import nn
from transformer_lens import HookedTransformer, ActivationCache
from jaxtyping import Float as JaxFloat
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.parametrizations import orthogonal
from torch.nn import functional as F
from transformer_lens import utils
from transformer_lens.hook_points import HookPoint
from fancy_einsum import einsum
from mandala._next.imports import op, sess, MList, MDict
MODEL_ID = 'gpt2small'
MODELS = {}
ROOT = Path(__file__).parent
NAMES_PATH = ROOT / "data" / "names.json"
OBJECTS_PATH = ROOT / "data" / "objects.json"
PLACES_PATH = ROOT / "data" / "places.json"
PREFIXES_PATH = ROOT / "data" / "prefixes.json"
TEMPLATES_PATH = ROOT / "data" / "templates.json"
GENDERS_TRAIN_PATH = ROOT / "data" / "genders_train.txt"
GENDERS_TEST_PATH = ROOT / "data" / "genders_test.txt"
NAMES = json.load(open(NAMES_PATH))
OBJECTS = json.load(open(OBJECTS_PATH))
PLACES = json.load(open(PLACES_PATH))
PREFIXES = json.load(open(PREFIXES_PATH))
TEMPLATES = json.load(open(TEMPLATES_PATH))
PREVIOUS_TOKEN_HEADS = [(2, 2), (4, 11)]
DUPLICATE_TOKEN_HEADS = [(0, 1), (3, 0), (0, 10)]
INDUCTION_HEADS = [(5, 5), (6, 9), (5, 8), (5, 9)]
S_INHIBITION_HEADS = [(7, 3), (7, 9), (8, 6), (8, 10)]
NAME_MOVERS = [(9, 9), (9, 6), (10, 0)]
NEGATIVE_NAME_MOVERS = [(10, 7), (11, 10)]
BACKUP_NAME_MOVERS = [(9, 0), (9, 7), (10, 1), (10, 2), (10, 10), (11, 2), (11, 9)]
def load_genders_dict() -> Dict[str, str]:
with open(GENDERS_TRAIN_PATH, 'r') as f:
lines = f.readlines()
with open(GENDERS_TEST_PATH, 'r') as f:
lines += f.readlines()
res = {}
for l in lines:
name, gender = l.split(', ')
name, gender = name.replace("'", ""), gender.replace("'", "").replace('\n', '')
res[name] = gender
return res
GENDERS_DICT = load_genders_dict()
def get_model_obj(model_id: str) -> HookedTransformer:
return MODELS[model_id]
def get_model(model_name: str = "gpt2-small",
config: Literal['default', 'webtext'] = 'default') -> HookedTransformer:
if config == 'default':
model = HookedTransformer.from_pretrained(
model_name=model_name,
center_unembed=True,
center_writing_weights=True,
fold_ln=True,
refactor_factored_attn_matrices=True,
)
elif config == 'webtext':
model = HookedTransformer.from_pretrained(model_name=model_name,)
else:
raise ValueError(f"Invalid config: {config}")
model.requires_grad_(False)
return model
def is_single_token(s: str, model: HookedTransformer) -> bool:
"""
Check if a string is a single token in the vocabulary of a model.
"""
try:
model.to_single_token(s)
return True
except Exception as e:
return False
class Prompt:
"""
Represent a general ABC prompt using a template, and operations on it that
are useful for generating datasets.
"""
def __init__(
self,
names: Tuple[str, str, str],
prefix: str,
template: str,
obj: str,
place: str,
):
self.names = names
self.prefix = prefix
self.template = template
self.obj = obj
self.place = place
if self.is_ioi:
self.s_name = self.names[2] # subject always appears in third position
self.io_name = [x for x in self.names[:2] if x != self.s_name][0]
else:
self.io_name = None
self.s_name = None
self.str_tokens = MODELS[MODEL_ID].to_str_tokens(self.sentence)
@property
def pattern(self) -> Literal['ABB', 'BAB']:
assert self.is_ioi
if self.names[1] == self.names[2]:
return 'ABB'
else:
return 'BAB'
@property
def flipped_pattern(self) -> Literal['ABB', 'BAB']:
if self.pattern == 'ABB':
return 'BAB'
else:
return 'ABB'
def with_changed_sname(self, new_sname: str) -> 'Prompt':
assert new_sname not in self.names
new_names = [new_sname if x == self.s_name else x for x in self.names]
return Prompt(
names=tuple(new_names),
template=self.template,
obj=self.obj,
place=self.place,
prefix=self.prefix,
)
def with_changed_ioname(self, new_ioname: str) -> 'Prompt':
assert new_ioname not in self.names
new_names = [new_ioname if x == self.io_name else x for x in self.names]
return Prompt(
names=tuple(new_names),
template=self.template,
obj=self.obj,
place=self.place,
prefix=self.prefix,
)
@property
def semantic_pos(self) -> Dict[str, int]:
if self.is_ioi:
return {
'io': self.io_token,
's1': self.s1_token,
's1+1': self.s1_plus1_token,
's2': self.s2_token,
'end': self.end_token,
}
else:
io_token = [i for i in range(len(self.str_tokens)) if self.str_tokens[i] == f' {self.names[0]}'][0]
s1_token = [i for i in range(len(self.str_tokens)) if self.str_tokens[i] == f' {self.names[1]}'][0]
s1_plus1_token = s1_token + 1
s2_token = [i for i in range(len(self.str_tokens)) if self.str_tokens[i] == f' {self.names[2]}'][0]
end_token = len(self.str_tokens) - 1
return {
'io': io_token,
's1': s1_token,
's1+1': s1_plus1_token,
's2': s2_token,
'end': end_token,
}
@property
def io_token(self) -> int:
idxs = [i for i in range(len(self.str_tokens)) if self.str_tokens[i] == f' {self.io_name}']
return idxs[0]
@property
def s1_token(self) -> int:
idxs = [i for i in range(len(self.str_tokens)) if self.str_tokens[i] == f' {self.s_name}']
return idxs[0]
@property
def s1_plus1_token(self) -> int:
return self.s1_token + 1
@property
def s2_token(self) -> int:
idxs = [i for i in range(len(self.str_tokens)) if self.str_tokens[i] == f' {self.s_name}']
return idxs[1]
@property
def end_token(self) -> int:
return len(self.str_tokens) - 1
@property
def is_ioi(self) -> bool:
return self.names[2] in self.names[:2] and len(set(self.names)) == 2
def __repr__(self) -> str:
return f"<===PROMPT=== {self.sentence}>"
@property
def sentence(self) -> str:
return self.prefix + self.template.format(
name_A=self.names[0],
name_B=self.names[1],
name_C=self.names[2],
object=self.obj,
place=self.place,
)
@staticmethod
def canonicalize(things: Tuple[str, str, str]) -> Tuple[str, str, str]:
# the unique elements of the tuple, in the order they appear
ordered_uniques = list(OrderedDict.fromkeys(things).keys())
canonical_elts = ['A', 'B', 'C']
uniques_to_canonical = {x: y for x, y in zip(ordered_uniques, canonical_elts[:len(ordered_uniques)])}
return tuple([uniques_to_canonical[x] for x in things])
@staticmethod
def matches_pattern(names: Tuple[str, str, str], pattern: str) -> bool:
return Prompt.canonicalize(names) == Prompt.canonicalize(tuple(pattern))
def resample_pattern(self, orig_pattern: str, new_pattern: str,
name_distribution: Sequence[str]) -> "Prompt":
"""
Change the pattern of the prompt, while keeping the names that are
mapped to the same symbols in the original and new patterns the same.
Args:
orig_pattern (str): _description_
new_pattern (str): _description_
name_distribution (Sequence[str]): _description_
Example:
prompt = train_distribution.sample_one(pattern='ABB')
(prompt.sentence,
prompt.resample_pattern(orig_pattern='ABB', new_pattern='BAA',
name_distribution=train_distribution.names,).sentence,
prompt.resample_pattern(orig_pattern='ABB', new_pattern='CDD',
name_distribution=train_distribution.names,).sentence,
prompt.resample_pattern(orig_pattern='ABB', new_pattern='ACC',
name_distribution=train_distribution.names,).sentence,
>>> ('Then, Olivia and Anna had a long and really crazy argument. Afterwards, Anna said to',
>>> 'Then, Anna and Olivia had a long and really crazy argument. Afterwards, Olivia said to',
>>> 'Then, Joe and Kelly had a long and really crazy argument. Afterwards, Kelly said to',
>>> 'Then, Olivia and Carl had a long and really crazy argument. Afterwards, Carl said to')
)
"""
assert len(orig_pattern) == 3
assert len(new_pattern) == 3
assert len(set(orig_pattern)) == len(set(new_pattern)) == 2
assert self.matches_pattern(names=self.names, pattern=orig_pattern)
orig_to_name = {orig_pattern[i]: self.names[i] for i in range(3)}
new_names = [None for _ in range(3)]
new_pos_to_symbol = {}
for i, symbol in enumerate(new_pattern):
if symbol in orig_to_name.keys():
new_names[i] = orig_to_name[symbol]
else:
new_pos_to_symbol[i] = symbol
new_symbols = new_pos_to_symbol.values()
if len(new_symbols) > 0:
new_symbol_to_name = {}
# must sample some *new* names
available_names = [x for x in name_distribution if x not in self.names]
for symbol in new_symbols:
new_symbol_to_name[symbol] = random.choice(available_names)
available_names.remove(new_symbol_to_name[symbol])
# populate new_names with new symbols
for i, symbol in new_pos_to_symbol.items():
new_names[i] = new_symbol_to_name[symbol]
return Prompt(
names=tuple(new_names),
template=self.template,
obj=self.obj,
place=self.place,
prefix=self.prefix,
)
def load_data(data: Union[List[str], str, Path]) -> List[str]:
if isinstance(data, (str, Path)):
with open(data) as f:
data: List[str] = json.load(f)
return data
class PromptDataset(Dataset):
def __init__(self, prompts: List[Prompt], model: HookedTransformer):
# assert len(prompts) > 0
self.prompts: Sequence[Prompt] = np.array(prompts)
self.model = model
ls = self.lengths
if not all(x == ls[0] for x in ls):
raise ValueError("Prompts must all have the same length")
def __getitem__(self, idx: Union[int, Sequence, slice]) -> "PromptDataset":
if isinstance(idx, int):
prompts = [self.prompts[idx]]
else:
prompts = self.prompts[idx]
if isinstance(prompts, Prompt):
prompts = [prompts]
assert all(isinstance(x, Prompt) for x in prompts)
return PromptDataset(prompts=prompts, model=self.model)
def __len__(self) -> int:
return len(self.prompts)
def __repr__(self) -> str:
return f"{[x for x in self.prompts]}"
def __add__(self, other: "PromptDataset") -> "PromptDataset":
return PromptDataset(
prompts=list(self.prompts) + list(other.prompts), model=self.model
)
@property
def lengths(self) -> List[int]:
return [self.model.to_tokens(x.sentence).shape[1] for x in self.prompts]
@property
def tokens(self) -> Tensor:
return self.model.to_tokens([x.sentence for x in self.prompts])
@property
def io_tokens(self) -> Tensor:
return torch.tensor(
[self.model.to_single_token(f" {x.io_name}") for x in self.prompts]
)
@property
def s_tokens(self) -> Tensor:
return torch.tensor(
[self.model.to_single_token(f" {x.s_name}") for x in self.prompts]
)
@property
def answer_tokens(self) -> JaxFloat[Tensor, "batch 2"]:
# return a tensor with two columns: self.io_tokens and self.s_tokens
return torch.tensor(
[
[
self.model.to_single_token(f" {x.io_name}"),
self.model.to_single_token(f" {x.s_name}"),
]
for x in self.prompts
]
)
class PromptDistribution:
"""
A class to represent a distribution over prompts.
It uses a combination of names, places, objects, prefixes, and templates
loaded from JSON files or provided lists.
Each prompt is constructed using a selected template and a randomly selected
name, object, and place.
Attributes
----------
prefix_len : int
The length of the prefix to use when creating the prompts.
"""
def __init__(
self,
names: Union[List[str], str, Path],
places: Union[List[str], str, Path],
objects: Union[List[str], str, Path],
prefixes: Union[List[str], str, Path],
templates: Union[List[str], str, Path],
prefix_len: int = 2,
):
self.prefix_len = prefix_len
self.names = load_data(names)
self.places = load_data(places)
self.objects = load_data(objects)
self.prefixes = load_data(prefixes)
self.templates = load_data(templates)
def sample_one(self,
pattern: str,
) -> Prompt:
"""
Sample a single prompt from the distribution.
"""
template = random.choice(self.templates)
unique_ids = list(set(pattern))
unique_names = random.sample(self.names, len(unique_ids))
assert len(set(unique_names)) == len(unique_names)
prompt_names = tuple([unique_names[unique_ids.index(i)] for i in pattern])
obj = random.choice(self.objects)
place = random.choice(self.places)
prefix = self.prefixes[self.prefix_len]
return Prompt(
names=prompt_names, template=template, obj=obj, place=place, prefix=prefix
)
train_distribution = PromptDistribution(
names=NAMES[:len(NAMES) // 2],
objects=OBJECTS[:len(OBJECTS) // 2],
places=PLACES[:len(PLACES) // 2],
prefix_len=2,
prefixes=PREFIXES,
templates=TEMPLATES[:2]
)
test_distribution = PromptDistribution(
names=NAMES[len(NAMES) // 2:],
objects=OBJECTS[len(OBJECTS) // 2:],
places=PLACES[len(PLACES) // 2:],
prefix_len=2,
prefixes=PREFIXES,
templates=TEMPLATES[2:]
)
full_distribution = PromptDistribution(
names=NAMES,
objects=OBJECTS,
places=PLACES,
prefix_len=2,
prefixes=PREFIXES,
templates=TEMPLATES,
)
class Node:
"""
Mostly a copy of the one in path_patching.py, we'll see if it diverges
"""
def __init__(
self,
component_name: Literal[
"z",
"attn_out",
"pre",
"post",
"mlp_out",
"resid_pre",
"resid_post",
"resid_mid",
"q",
"k",
"v",
"pattern",
"attn_scores",
"result",
"q_input",
"k_input",
"v_input",
'scale_ln1',
'scale_ln2',
'scale_final',
"ln_final",
],
layer: Optional[int] = None,
head: Optional[int] = None,
neuron: Optional[int] = None,
seq_pos: Optional[Union[int, str]] = None, # string used for semantic indexing
):
assert isinstance(component_name, str)
self.component_name = component_name
if layer is not None:
assert isinstance(layer, int)
self.layer = layer
if head is not None:
assert isinstance(head, int)
self.head = head
if neuron is not None:
assert isinstance(neuron, int)
self.neuron = neuron
if seq_pos is not None:
assert isinstance(seq_pos, (int, str))
self.seq_pos = seq_pos
def with_resolved_position(self, prompt: Prompt) -> 'Node':
"""
Return a new node with the seq_pos resolved to an integer.
"""
if isinstance(self.seq_pos, str):
return Node(
component_name=self.component_name,
layer=self.layer,
head=self.head,
neuron=self.neuron,
seq_pos=prompt.semantic_pos[self.seq_pos],
)
else:
return self
def __hash__(self) -> int:
return hash((self.component_name, self.layer, self.head, self.neuron, self.seq_pos))
def __lt__(self, other: 'Node') -> bool:
return hash(self) < hash(other)
def __eq__(self, other: 'Node') -> bool:
return hash(self) == hash(other)
def __le__(self, other: 'Node') -> bool:
return hash(self) <= hash(other)
@property
def activation_name(self) -> str:
if self.component_name == 'scale_ln1':
return utils.get_act_name('scale', layer=self.layer, layer_type='ln1')
elif self.component_name == 'scale_ln2':
return utils.get_act_name('scale', layer=self.layer, layer_type='ln2')
elif self.component_name == 'scale_final':
return utils.get_act_name('scale', layer=None)
else:
return utils.get_act_name(self.component_name, layer=self.layer)
@property
def shape_type(self) -> List[str]:
"""
List of the meaning of each dimension of the full activation for this
node (i.e., what you'd get if you did `cache[self.activation_name]`).
This is just for reference
"""
if self.component_name in [
"resid_pre",
"resid_post",
"resid_mid",
"q_input",
"k_input",
"v_input",
]:
return ["batch", "seq", "d_model"]
elif self.component_name == 'pattern':
return ["batch", "head", "query_pos", "key_pos"]
elif self.component_name in ["q", "k", "v", "z"]:
return ["batch", "seq", "head", "d_head"]
elif self.component_name in ["result"]:
return ["batch", "seq", "head", "d_model"]
elif self.component_name == 'scale':
return ['batch', 'seq']
elif self.component_name == 'post':
return ['batch', 'seq', 'd_mlp']
else:
raise NotImplementedError
def idx(self, prompts: Optional[List[Prompt]] = None) -> Tuple[Union[int, slice, Tensor, None], ...]:
"""
Index into the full activation to restrict to layer / head / neuron /
seq_pos
"""
if isinstance(self.seq_pos, str):
assert prompts is not None
seq_pos_idx = torch.Tensor([p.semantic_pos[self.seq_pos] for p in prompts]).long()
batch_idx = torch.arange(len(prompts)).long()
elif isinstance(self.seq_pos, int):
seq_pos_idx = self.seq_pos
batch_idx = slice(None)
elif self.seq_pos is None:
seq_pos_idx = slice(None)
batch_idx = slice(None)
else:
raise NotImplementedError
if self.neuron is not None:
raise NotImplementedError
elif self.component_name in ['pattern', 'attn_scores']:
assert self.head is not None
return tuple([slice(None), self.head, slice(None), slice(None)])
elif self.component_name in ["q", "k", "v", "z", "result"]:
assert self.head is not None, "head must be specified for this component"
return tuple([batch_idx, seq_pos_idx, self.head, slice(None)])
elif self.component_name == 'scale':
return tuple([slice(None), slice(None)])
elif self.component_name == 'post':
return tuple([batch_idx, seq_pos_idx, slice(None)])
else:
return tuple([batch_idx, seq_pos_idx, slice(None)])
@property
def names_filter(self) -> Callable:
return lambda x: x in [self.activation_name]
@staticmethod
def get_names_filter(nodes: List['Node']) -> Callable:
return lambda x: any(node.names_filter(x) for node in nodes)
@property
def needs_head_results(self) -> bool:
return self.component_name in ['result']
def get_value(self, cache: ActivationCache,
prompts: Optional[List[Prompt]] = None
) -> Tensor:
return cache[self.activation_name][self.idx(prompts=prompts)]
def __repr__(self) -> str:
properties = OrderedDict({
"component_name": self.component_name,
"layer": self.layer,
"head": self.head,
"neuron": self.neuron,
"seq_pos": self.seq_pos,
})
properties = ", ".join(f"{k}={v}" for k, v in properties.items() if v is not None)
return f"Node({properties})"
@property
def displayname(self) -> str:
if self.component_name in ('q', 'k', 'v', 'z'):
return f'{self.component_name}@L{self.layer}H{self.head}@{self.seq_pos}'
else:
raise NotImplementedError
################################################################################
### batched decorator
################################################################################
class batched:
"""
A decorator to run a function in batches over given arguments. The results
from each batch are aggregated using a reducer function, e.g. sum, mean, or
concatenation.
Things that came up during use:
- sometimes, you return a list of things, and you want to concatenate across
respective elements of the list, instead of concatenating all the lists into
one big list.
- sometimes you return a variable number of outputs
- sometimes it is more natural to concatenate over a dimension different
from the first one.
- sometimes you want to concatenate dataframes instead of tensors.
"""
def __init__(
self,
args: List[str],
n_outputs: Union[int, Literal['var']],
reducer: Union[Callable, str] = "cat",
shuffle: bool = False,
verbose: bool = True,
):
self.args = args
self.n_outputs = n_outputs
self.reducer = reducer
self.shuffle = shuffle
self.verbose = verbose
if self.shuffle:
raise NotImplementedError
T = typing.TypeVar("T", Tensor, np.ndarray, Sequence)
@staticmethod
def get_slice(x: T, idx: np.ndarray) -> T:
if isinstance(x, (Tensor, np.ndarray)):
return x[idx]
elif isinstance(x, (list, tuple)):
return type(x)([x[i] for i in idx])
elif isinstance(x, dict):
return type(x)({k: batched.get_slice(v, idx) for k, v in x.items()})
else:
try:
return x[idx]
except:
raise NotImplementedError(f"Cannot slice {type(x)}")
@staticmethod
def get_arg_length(x: T, ) -> int:
if isinstance(x, (Tensor, np.ndarray)):
return x.shape[0]
# elif isinstance(x, (list, tuple)):
# element_lengths = [batched.get_arg_length(x[i]) for i in range(len(x))]
# if len(set(element_lengths)) != 1:
# raise ValueError(f"Argument {x} has elements of different lengths")
# return element_lengths[0]
elif isinstance(x, dict):
value_lengths = [batched.get_arg_length(v) for v in x.values()]
if len(set(value_lengths)) != 1:
raise ValueError(f"Dict argument {x} has values of different lengths")
return value_lengths[0]
else:
try:
return len(x)
except:
raise NotImplementedError(f"Cannot get length of {type(x)}")
@staticmethod
def average_objs(xs: List[T], dim: int = 0) -> Union[T, Dict[Any, T], List[T]]:
assert len({type(x) for x in xs}) == 1
if isinstance(xs[0], (Tensor, np.ndarray)):
return sum(xs) / len(xs)
elif isinstance(xs[0], pd.DataFrame):
return sum(xs) / len(xs)
elif isinstance(xs[0], list):
assert len({len(x) for x in xs}) == 1
return [batched.average_objs([x[i] for x in xs], dim=dim) for i in range(len(xs[0]))]
elif isinstance(xs[0], dict):
# check all dicts have the same set of keys
assert all(set(x.keys()) == set(xs[0].keys()) for x in xs)
return {k: batched.average_objs([x[k] for x in xs], dim=dim) for k in xs[0].keys()}
elif xs[0] is None:
return None
else:
raise NotImplementedError
@staticmethod
def concatenate_objs(xs: Any, dim: int = 0) -> Any:
assert len({type(x) for x in xs}) == 1
# if isinstance(xs[0], TransientObj):
# return Transient(batched.concatenate_objs([x.obj for x in xs], dim=dim))
if isinstance(xs[0], Tensor):
return torch.cat(xs, dim=dim)
elif isinstance(xs[0], np.ndarray):
return np.concatenate(xs, axis=dim)
elif isinstance(xs[0], pd.DataFrame):
return pd.concat(xs, ignore_index=True)
elif isinstance(xs[0], dict):
# check all dicts have the same set of keys
assert all(set(x.keys()) == set(xs[0].keys()) for x in xs)
return {k: batched.concatenate_objs([x[k] for x in xs], dim=dim) for k in xs[0].keys()}
elif isinstance(xs[0], list):
assert len({len(x) for x in xs}) == 1
return [batched.concatenate_objs([x[i] for x in xs], dim=dim) for i in range(len(xs[0]))]
elif xs[0] is None:
return None
else:
raise NotImplementedError
def __call__(self, func: Callable) -> "func":
@functools.wraps(func)
def wrapper(*args, **kwargs):
batch_size = kwargs.get("batch_size", None)
verbose = kwargs.get("verbose", self.verbose)
if batch_size is None:
return func(*args, **kwargs)
bound_args = inspect.signature(func).bind(*args, **kwargs)
bound_args.apply_defaults()
named_args = dict(bound_args.arguments)
batching_args = {k: named_args[k] for k in self.args}
# check all the lengths are the same
# lengths = [len(v) for v in batching_args.values()]
lengths = [batched.get_arg_length(v) for v in batching_args.values()]
assert (
len(set(lengths)) == 1
), f"All batched arguments must have the same length. Instead got lengths {lengths}"
length = lengths[0]
assert length > 0
num_batches = math.ceil(length / batch_size)
results = []
pbar = tqdm if verbose else lambda x: x
for i in pbar(range(num_batches)):
batch_idx = np.arange(
i * batch_size, min(lengths[0], (i + 1) * batch_size)
)
batched_args = {k: batched.get_slice(v, batch_idx) for k, v in batching_args.items()}
named_args.update(batched_args)
results.append(func(**named_args))
# todo: refactor this logit to be uniform across reducers
if self.reducer.startswith('cat'):
if self.reducer == 'cat':
dim = 0
else:
_, dim = self.reducer.split('_')
dim = int(dim)
# concatenate the results per output
if self.n_outputs == 1:
return batched.concatenate_objs(results, dim=dim)
else:
assert len({len(r) for r in results}) == 1
return tuple([
batched.concatenate_objs([r[i] for r in results], dim=dim)
for i in range(len(results[0]))
])
elif self.reducer == "mean":
if self.n_outputs == 1:
return batched.average_objs(results)
else:
assert len({len(r) for r in results}) == 1
return tuple([
sum([r[i] for r in results]) / len(results)
for i in range(len(results[0]))
])
else:
raise NotImplementedError
return wrapper
################################################################################
### batched utils
################################################################################
@op
@batched(args=['prompts'], n_outputs=1, reducer='cat')
def estimate_resid_scales_before(
prompts: Any,
nodes: List[Node],
batch_size: int,
model_id: str = MODEL_ID,
verbose: bool = True,
) -> List[Tensor]:
corresponding_resid_nodes = [
Node(component_name='resid_pre', layer=node.layer, seq_pos=node.seq_pos)
for node in nodes
]
model = MODELS[model_id]
prompt_dataset = PromptDataset(prompts=prompts, model=model)
_, cache = model.run_with_cache(prompt_dataset.tokens, names_filter=Node.get_names_filter(corresponding_resid_nodes))
acts = [node.get_value(cache, prompts=prompts) for node in corresponding_resid_nodes]
#! importantly, center the activations first
acts = [act - act.mean(dim=0) for act in acts]
return [act.norm(dim=-1) for act in acts]
@op
@batched(args=['prompts'], n_outputs=1, reducer='cat')
def run_with_cache(
prompts: Any,
nodes: MList[Node],
batch_size: int,
model_id: str = MODEL_ID,
verbose: bool = True,
return_logits: bool = False,
offload_to_cpu: bool = False,
clear_cache: bool = False,
) -> MList[Tensor]:
"""
Run the model on the given prompts, and return the activations for the
given nodes.
"""
print(f'Batch size: {batch_size}')
model = MODELS[model_id]
if len(prompts) % batch_size != 0:
raise ValueError(f"Number of prompts ({len(prompts)}) must be a multiple of batch_size ({batch_size})")
prompt_dataset = PromptDataset(prompts=prompts, model=model)
logits, cache = model.run_with_cache(prompt_dataset.tokens, names_filter=Node.get_names_filter(nodes))
# model.reset_hooks() ---> this is potentially confusing
# return {node: node.get_value(cache, prompts=prompts) for node in nodes}
acts = [node.get_value(cache, prompts=prompts) for node in nodes]
if return_logits:
res = acts + [logits]
else:
res = acts
if offload_to_cpu:
res = [x.cpu() for x in res]
if clear_cache:
torch.cuda.empty_cache()
return res
@op
@batched(args=['prompts'], n_outputs=1, reducer='cat')
def run_with_hooks(
prompts: Any,
hooks: Optional[List[Tuple[str, Callable]]],
batch_size: int,
return_predictions: bool = False,
semantic_nodes: Optional[List[Node]] = None,
semantic_hooks: Optional[List[Tuple[str, Callable]]] = None,
model_id: str = MODEL_ID,
return_full_last_logits: bool = False,
) -> Tensor:
model = MODELS[model_id]
prompt_dataset = PromptDataset(prompts=prompts, model=model)
assert (semantic_hooks is None) == (semantic_nodes is None)
if semantic_nodes is not None:
assert hooks is None
assert semantic_hooks is not None
hooks = []
idxs_by_semantic_pos = {k: [p.semantic_pos[k] for p in prompts] for k in prompts[0].semantic_pos.keys()}
for node, hook in zip(semantic_nodes, semantic_hooks):
hooks.append((hook[0], partial(hook[1], idx=node.idx(prompts=prompts))))
model.reset_hooks()
logits = model.run_with_hooks(prompt_dataset.tokens, fwd_hooks=hooks)
if return_full_last_logits:
return logits[:, -1, :]
if return_predictions:
return logits[:, -1, :].argmax(dim=-1)
else:
return logits[:, -1, :].gather(1, index=prompt_dataset.answer_tokens.cuda())
def get_deletion_hooks(codes_dict: Dict[Node, Dict[tuple, Tensor]],
feature: Tuple[str,...],
feature_value_idx: Tuple[int,...],
method: str = 'zero_ablate_subspace',
A_reference_dict: Optional[Dict[Node, Tensor]] = None,
) -> List[Tuple[str, Callable]]:
"""
Return logit differences when we intervene by deleting the feature from the
given node.
"""
codes_to_delete = {}
for node, node_codes in codes_dict.items():
code_vals = node_codes[feature]
code_to_delete = code_vals[feature_value_idx] # shape (dim,)
codes_to_delete[node] = code_to_delete
def deletion_hook_factory(activation: Tensor, hook: HookPoint,
code_to_delete: Tensor, node: Node, idx: Tensor,
) -> Tensor:
val = activation[idx] # shape (..., dim)
# expected_proj = (A_reference[node][:10_000] @
# direction_to_delete).mean(dim=0)
if method == 'zero_ablate_subspace':
code_to_delete = code_to_delete / code_to_delete.norm()
new_val = val + einsum('batch, dim -> batch dim', - val @ code_to_delete, code_to_delete)
elif method == 'mean_ablate_subspace':
assert A_reference_dict is not None
code_to_delete = code_to_delete / code_to_delete.norm()
mean_projection = (A_reference_dict[node] @ code_to_delete).mean(dim=0)
new_val = val + einsum('batch, dim -> batch dim', (mean_projection - val) @ code_to_delete, code_to_delete)
elif method == 'subtract_code':
new_val = val - code_to_delete
else:
raise ValueError(f'unknown method {method}')
activation[idx] = new_val
return activation
semantic_hooks = [(node.activation_name, partial(deletion_hook_factory,
code_to_delete=codes_to_delete[node],
node=node)) for node in codes_dict.keys()]
return semantic_hooks
def flip_pattern(p: Prompt) -> Prompt:
if p.names[1] == p.names[2]: # ABB
return Prompt( # BAB
names=(p.names[1], p.names[0], p.names[2]),
prefix=p.prefix,
template=p.template,
obj=p.obj,
place=p.place,
)
elif p.names[0] == p.names[2]: # BAB
return Prompt( # ABB
names=(p.names[1], p.names[0], p.names[2]),
prefix=p.prefix,
template=p.template,
obj=p.obj,
place=p.place,
)
else:
raise ValueError