-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHeart_Attack_App_deploy.py
74 lines (62 loc) · 2.92 KB
/
Heart_Attack_App_deploy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# -*- coding: utf-8 -*-
"""
"""
# From the model, there are 7 selected features include
# age,thalachh,oldpeak,cp,exng,caa, and thall
import os
import pickle
import numpy as np
import streamlit as st
from PIL import Image
# 'age', 'trtbps', 'chol', 'thalachh', 'oldpeak', 'cp', 'exng', 'caa', 'thall', 'output'
#%% App Deployment
MODEL_PATH = os.path.join(os.getcwd(),'Models','HAP_App_model.pkl')
with open(MODEL_PATH,'rb') as file:
classifier = pickle.load(file)
# df = pd.read_csv(os.path.join(os.getcwd(),'Dataset','test_data.csv'),
# delim_whitespace=(True))
# df = pd.read_csv(os.path.join(os.getcwd(),'Dataset','test.csv'))
# print(classifier.predict(df))
# The result from the model [1. 0. 1. 1. 1. 0. 1. 1. 0. 0.]
# The result are the same as the True output except for the test data no 8.
#%% App Development
st.markdown("<h1 style='text-align: center; color: black;'> Heart Attack App </h1>",
unsafe_allow_html=True)
# Main Page
st.header('What is Heart Attack?')
st.video('https://youtu.be/bw_Vv2WRG-A')
# SideBar Page
st.sidebar.header("Please fill in the details below")
age = st.sidebar.number_input("Age in Years", 1, 90, 65, 1)
trtbps = st.sidebar.number_input("Resting blood pressure value of patient in mmHg (unit)", 1, 200, 179, 1)
chol = st.sidebar.number_input("Cholesterol of patient in mg/dl (unit)", 1, 450, 273, 1)
cp = st.sidebar.number_input("Chest Pain type",0,3,1,1)
thalachh = st.sidebar.number_input("Maximum Heart Rate Achieved",0,200,150,1)
exng = st.sidebar.number_input("Exercise Induced Angina",0,1,1,1)
oldpeak = st.sidebar.number_input("ST depression induced by exercise"
"relative to rest",
0.00, 3.50, 2.3, 0.10)
caa = st.sidebar.number_input("Number of major vessels (0-3)",0,3,1,1)
thall = st.sidebar.number_input("Thalassemia",0,3,1,1)
# Every form must have a submit button.
submitted = st.sidebar.button("Submit")
st.markdown(
"<h1 style='text-align: center; color: black;'>Your Result</h1>",
unsafe_allow_html=True)
if submitted:
new_data = np.expand_dims([age,trtbps,chol,thalachh,oldpeak,cp,
exng,caa,thall],axis=0)
outcome = classifier.predict(new_data)[0]
if outcome == 0:
st.markdown(
"<h3 style='text-align: center; color: black;'>Congrats you are healthy, no risk of heart attack, keep it up!!</h3>",
unsafe_allow_html=True)
st.markdown(
"![Alt Text](https://media.giphy.com/media/kwDQ9I0oAPVqE/giphy.gif)")
st.balloons()
else:
st.markdown(
"<h3 style='text-align: center; color: black;'>You have a risk of experiencing a <b>heart attack</b>. Consult a doctor immediately</h3>",
unsafe_allow_html=True)
st.image(Image.open(os.path.join(os.getcwd(),'Statics','HA_tips.png')))
st.snow()