forked from neurotrader888/TechnicalAnalysisAutomation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflags_pennants.py
489 lines (375 loc) · 17 KB
/
flags_pennants.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import mplfinance as mpf
from perceptually_important import find_pips
from rolling_window import rw_top, rw_bottom
from trendline_automation import fit_trendlines_single
from dataclasses import dataclass
@dataclass
class FlagPattern:
base_x: int # Start of the trend index, base of pole
base_y: float # Start of trend price
tip_x: int = -1 # Tip of pole, start of flag
tip_y: float = -1.
conf_x: int = -1 # Index where pattern is confirmed
conf_y: float = -1. # Price where pattern is confirmed
pennant: bool = False # True if pennant, false if flag
flag_width: int = -1
flag_height: float = -1.
pole_width: int = -1
pole_height: float = -1.
# Upper and lower lines for flag, intercept is tip_x
support_intercept: float = -1.
support_slope: float = -1.
resist_intercept: float = -1.
resist_slope: float = -1.
def check_bear_pattern_pips(pending: FlagPattern, data: np.array, i:int, order:int):
# Find max price since local bottom, (top of pole)
data_slice = data[pending.base_x: i + 1] # i + 1 includes current price
min_i = data_slice.argmin() + pending.base_x # Min index since local top
if i - min_i < max(5, order * 0.5): # Far enough from max to draw potential flag/pennant
return False
# Test flag width / height
pole_width = min_i - pending.base_x
flag_width = i - min_i
if flag_width > pole_width * 0.5: # Flag should be less than half the width of pole
return False
pole_height = pending.base_y - data[min_i]
flag_height = data[min_i:i+1].max() - data[min_i]
if flag_height > pole_height * 0.5: # Flag should smaller vertically than preceding trend
return False
# If here width/height are OK.
# Find perceptually important points from pole to current time
pips_x, pips_y = find_pips(data[min_i:i+1], 5, 3) # Finds pips between max and current index (inclusive)
# Check center pip is less than two adjacent. /\/\
if not (pips_y[2] < pips_y[1] and pips_y[2] < pips_y[3]):
return False
# Find slope and intercept of flag lines
# intercept is at the max value (top of pole)
support_rise = pips_y[2] - pips_y[0]
support_run = pips_x[2] - pips_x[0]
support_slope = support_rise / support_run
support_intercept = pips_y[0]
resist_rise = pips_y[3] - pips_y[1]
resist_run = pips_x[3] - pips_x[1]
resist_slope = resist_rise / resist_run
resist_intercept = pips_y[1] + (pips_x[0] - pips_x[1]) * resist_slope
# Find x where two lines intersect.
#print(pips_x[0], resist_slope, support_slope)
if resist_slope != support_slope: # Not parallel
intersection = (support_intercept - resist_intercept) / (resist_slope - support_slope)
#print("Intersects at", intersection)
else:
intersection = -flag_width * 100
# No intersection in flag area
if intersection <= pips_x[4] and intersection >= 0:
return False
# Check if current point has a breakout of flag. (confirmation)
support_endpoint = pips_y[0] + support_slope * pips_x[4]
if pips_y[4] > support_endpoint:
return False
if resist_slope < 0:
pending.pennant = True
else:
pending.pennant = False
# Filter harshly diverging lines
if intersection < 0 and intersection > -flag_width:
return False
pending.tip_x = min_i
pending.tip_y = data[min_i]
pending.conf_x = i
pending.conf_y = data[i]
pending.flag_width = flag_width
pending.flag_height = flag_height
pending.pole_width = pole_width
pending.pole_height = pole_height
pending.support_slope = support_slope
pending.support_intercept = support_intercept
pending.resist_slope = resist_slope
pending.resist_intercept = resist_intercept
return True
def check_bull_pattern_pips(pending: FlagPattern, data: np.array, i:int, order:int):
# Find max price since local bottom, (top of pole)
data_slice = data[pending.base_x: i + 1] # i + 1 includes current price
max_i = data_slice.argmax() + pending.base_x # Max index since bottom
pole_width = max_i - pending.base_x
if i - max_i < max(5, order * 0.5): # Far enough from max to draw potential flag/pennant
return False
flag_width = i - max_i
if flag_width > pole_width * 0.5: # Flag should be less than half the width of pole
return False
pole_height = data[max_i] - pending.base_y
flag_height = data[max_i] - data[max_i:i+1].min()
if flag_height > pole_height * 0.5: # Flag should smaller vertically than preceding trend
return False
pips_x, pips_y = find_pips(data[max_i:i+1], 5, 3) # Finds pips between max and current index (inclusive)
# Check center pip is greater than two adjacent. \/\/
if not (pips_y[2] > pips_y[1] and pips_y[2] > pips_y[3]):
return False
# Find slope and intercept of flag lines
# intercept is at the max value (top of pole)
resist_rise = pips_y[2] - pips_y[0]
resist_run = pips_x[2] - pips_x[0]
resist_slope = resist_rise / resist_run
resist_intercept = pips_y[0]
support_rise = pips_y[3] - pips_y[1]
support_run = pips_x[3] - pips_x[1]
support_slope = support_rise / support_run
support_intercept = pips_y[1] + (pips_x[0] - pips_x[1]) * support_slope
# Find x where two lines intersect.
if resist_slope != support_slope: # Not parallel
intersection = (support_intercept - resist_intercept) / (resist_slope - support_slope)
else:
intersection = -flag_width * 100
# No intersection in flag area
if intersection <= pips_x[4] and intersection >= 0:
return False
# Filter harshly diverging lines
if intersection < 0 and intersection > -1.0 * flag_width:
return False
# Check if current point has a breakout of flag. (confirmation)
resist_endpoint = pips_y[0] + resist_slope * pips_x[4]
if pips_y[4] < resist_endpoint:
return False
# Pattern is confiremd, fill out pattern details in pending
if support_slope > 0:
pending.pennant = True
else:
pending.pennant = False
pending.tip_x = max_i
pending.tip_y = data[max_i]
pending.conf_x = i
pending.conf_y = data[i]
pending.flag_width = flag_width
pending.flag_height = flag_height
pending.pole_width = pole_width
pending.pole_height = pole_height
pending.support_slope = support_slope
pending.support_intercept = support_intercept
pending.resist_slope = resist_slope
pending.resist_intercept = resist_intercept
return True
def find_flags_pennants_pips(data: np.array, order:int):
assert(order >= 3)
pending_bull = None # Pending pattern
pending_bear = None # Pending pattern
bull_pennants = []
bear_pennants = []
bull_flags = []
bear_flags = []
for i in range(len(data)):
# Pattern data is organized like so:
if rw_top(data, i, order):
pending_bear = FlagPattern(i - order, data[i - order])
if rw_bottom(data, i, order):
pending_bull = FlagPattern(i - order, data[i - order])
if pending_bear is not None:
if check_bear_pattern_pips(pending_bear, data, i, order):
if pending_bear.pennant:
bear_pennants.append(pending_bear)
else:
bear_flags.append(pending_bear)
pending_bear = None
if pending_bull is not None:
if check_bull_pattern_pips(pending_bull, data, i, order):
if pending_bull.pennant:
bull_pennants.append(pending_bull)
else:
bull_flags.append(pending_bull)
pending_bull = None
return bull_flags, bear_flags, bull_pennants, bear_pennants
def check_bull_pattern_trendline(pending: FlagPattern, data: np.array, i:int, order:int):
# Check if data max less than pole tip
if data[pending.tip_x + 1 : i].max() > pending.tip_y:
return False
flag_min = data[pending.tip_x:i].min()
# Find flag/pole height and width
pole_height = pending.tip_y - pending.base_y
pole_width = pending.tip_x - pending.base_x
flag_height = pending.tip_y - flag_min
flag_width = i - pending.tip_x
if flag_width > pole_width * 0.5: # Flag should be less than half the width of pole
return False
if flag_height > pole_height * 0.75: # Flag should smaller vertically than preceding trend
return False
# Find trendlines going from flag tip to the previous bar (not including current bar)
support_coefs, resist_coefs = fit_trendlines_single(data[pending.tip_x:i])
support_slope, support_intercept = support_coefs[0], support_coefs[1]
resist_slope, resist_intercept = resist_coefs[0], resist_coefs[1]
# Check for breakout of upper trendline to confirm pattern
current_resist = resist_intercept + resist_slope * (flag_width + 1)
if data[i] <= current_resist:
return False
# Pattern is confiremd, fill out pattern details in pending
if support_slope > 0:
pending.pennant = True
else:
pending.pennant = False
pending.conf_x = i
pending.conf_y = data[i]
pending.flag_width = flag_width
pending.flag_height = flag_height
pending.pole_width = pole_width
pending.pole_height = pole_height
pending.support_slope = support_slope
pending.support_intercept = support_intercept
pending.resist_slope = resist_slope
pending.resist_intercept = resist_intercept
return True
def check_bear_pattern_trendline(pending: FlagPattern, data: np.array, i:int, order:int):
# Check if data max less than pole tip
if data[pending.tip_x + 1 : i].min() < pending.tip_y:
return False
flag_max = data[pending.tip_x:i].max()
# Find flag/pole height and width
pole_height = pending.base_y - pending.tip_y
pole_width = pending.tip_x - pending.base_x
flag_height = flag_max - pending.tip_y
flag_width = i - pending.tip_x
if flag_width > pole_width * 0.5: # Flag should be less than half the width of pole
return False
if flag_height > pole_height * 0.75: # Flag should smaller vertically than preceding trend
return False
# Find trendlines going from flag tip to the previous bar (not including current bar)
support_coefs, resist_coefs = fit_trendlines_single(data[pending.tip_x:i])
support_slope, support_intercept = support_coefs[0], support_coefs[1]
resist_slope, resist_intercept = resist_coefs[0], resist_coefs[1]
# Check for breakout of lower trendline to confirm pattern
current_support = support_intercept + support_slope * (flag_width + 1)
if data[i] >= current_support:
return False
# Pattern is confiremd, fill out pattern details in pending
if resist_slope < 0:
pending.pennant = True
else:
pending.pennant = False
pending.conf_x = i
pending.conf_y = data[i]
pending.flag_width = flag_width
pending.flag_height = flag_height
pending.pole_width = pole_width
pending.pole_height = pole_height
pending.support_slope = support_slope
pending.support_intercept = support_intercept
pending.resist_slope = resist_slope
pending.resist_intercept = resist_intercept
return True
def find_flags_pennants_trendline(data: np.array, order:int):
assert(order >= 3)
pending_bull = None # Pending pattern
pending_bear = None # Pending pattern
last_bottom = -1
last_top = -1
bull_pennants = []
bear_pennants = []
bull_flags = []
bear_flags = []
for i in range(len(data)):
# Pattern data is organized like so:
if rw_top(data, i, order):
last_top = i - order
if last_bottom != -1:
pending = FlagPattern(last_bottom, data[last_bottom])
pending.tip_x = last_top
pending.tip_y = data[last_top]
pending_bull = pending
if rw_bottom(data, i, order):
last_bottom = i - order
if last_top != -1:
pending = FlagPattern(last_top, data[last_top])
pending.tip_x = last_bottom
pending.tip_y = data[last_bottom]
pending_bear = pending
if pending_bear is not None:
if check_bear_pattern_trendline(pending_bear, data, i, order):
if pending_bear.pennant:
bear_pennants.append(pending_bear)
else:
bear_flags.append(pending_bear)
pending_bear = None
if pending_bull is not None:
if check_bull_pattern_trendline(pending_bull, data, i, order):
if pending_bull.pennant:
bull_pennants.append(pending_bull)
else:
bull_flags.append(pending_bull)
pending_bull = None
return bull_flags, bear_flags, bull_pennants, bear_pennants
def plot_flag(candle_data: pd.DataFrame, pattern: FlagPattern, pad=2):
if pad < 0:
pad = 0
start_i = pattern.base_x - pad
end_i = pattern.conf_x + 1 + pad
dat = candle_data.iloc[start_i:end_i]
idx = dat.index
plt.style.use('dark_background')
fig = plt.gcf()
ax = fig.gca()
tip_idx = idx[pattern.tip_x - start_i]
conf_idx = idx[pattern.conf_x - start_i]
pole_line = [(idx[pattern.base_x - start_i], pattern.base_y), (tip_idx, pattern.tip_y)]
upper_line = [(tip_idx, pattern.resist_intercept), (conf_idx, pattern.resist_intercept + pattern.resist_slope * pattern.flag_width)]
lower_line = [(tip_idx, pattern.support_intercept), (conf_idx, pattern.support_intercept + pattern.support_slope * pattern.flag_width)]
mpf.plot(dat, alines=dict(alines=[pole_line, upper_line, lower_line], colors=['w', 'b', 'b']), type='candle', style='charles', ax=ax)
plt.show()
if __name__ == '__main__':
data = pd.read_csv('BTCUSDT3600.csv')
data['date'] = data['date'].astype('datetime64[s]')
data = data.set_index('date')
data = np.log(data)
dat_slice = data['close'].to_numpy()
#bull_flags, bear_flags, bull_pennants, bear_pennants = find_flags_pennants_pips(dat_slice, 12)
bull_flags, bear_flags, bull_pennants, bear_pennants = find_flags_pennants_trendline(dat_slice, 10)
bull_flag_df = pd.DataFrame()
bull_pennant_df = pd.DataFrame()
bear_flag_df = pd.DataFrame()
bear_pennant_df = pd.DataFrame()
# Assemble data into dataframe
hold_mult = 1.0 # Multipler of flag width to hold for after a pattern
for i, flag in enumerate(bull_flags):
bull_flag_df.loc[i, 'flag_width'] = flag.flag_width
bull_flag_df.loc[i, 'flag_height'] = flag.flag_height
bull_flag_df.loc[i, 'pole_width'] = flag.pole_width
bull_flag_df.loc[i, 'pole_height'] = flag.pole_height
bull_flag_df.loc[i, 'slope'] = flag.resist_slope
hp = int(flag.flag_width * hold_mult)
if flag.conf_x + hp >= len(data):
bull_flag_df.loc[i, 'return'] = np.nan
else:
ret = dat_slice[flag.conf_x + hp] - dat_slice[flag.conf_x]
bull_flag_df.loc[i, 'return'] = ret
for i, flag in enumerate(bear_flags):
bear_flag_df.loc[i, 'flag_width'] = flag.flag_width
bear_flag_df.loc[i, 'flag_height'] = flag.flag_height
bear_flag_df.loc[i, 'pole_width'] = flag.pole_width
bear_flag_df.loc[i, 'pole_height'] = flag.pole_height
bear_flag_df.loc[i, 'slope'] = flag.support_slope
hp = int(flag.flag_width * hold_mult)
if flag.conf_x + hp >= len(data):
bear_flag_df.loc[i, 'return'] = np.nan
else:
ret = -1 * (dat_slice[flag.conf_x + hp] - dat_slice[flag.conf_x])
bear_flag_df.loc[i, 'return'] = ret
for i, pennant in enumerate(bull_pennants):
bull_pennant_df.loc[i, 'pennant_width'] = pennant.flag_width
bull_pennant_df.loc[i, 'pennant_height'] = pennant.flag_height
bull_pennant_df.loc[i, 'pole_width'] = pennant.pole_width
bull_pennant_df.loc[i, 'pole_height'] = pennant.pole_height
hp = int(pennant.flag_width * hold_mult)
if flag.conf_x + hp >= len(data):
bull_pennant_df.loc[i, 'return'] = np.nan
else:
ret = dat_slice[pennant.conf_x + hp] - dat_slice[pennant.conf_x]
bull_pennant_df.loc[i, 'return'] = ret
for i, pennant in enumerate(bear_pennants):
bear_pennant_df.loc[i, 'pennant_width'] = pennant.flag_width
bear_pennant_df.loc[i, 'pennant_height'] = pennant.flag_height
bear_pennant_df.loc[i, 'pole_width'] = pennant.pole_width
bear_pennant_df.loc[i, 'pole_height'] = pennant.pole_height
hp = int(pennant.flag_width * hold_mult)
if flag.conf_x + hp >= len(data):
bear_pennant_df.loc[i, 'return'] = np.nan
else:
ret = -1 * (dat_slice[pennant.conf_x + hp] - dat_slice[pennant.conf_x])
bear_pennant_df.loc[i, 'return'] = ret