-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_2019.py
323 lines (274 loc) · 10.6 KB
/
main_2019.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import requests
import cv2
import numpy as np
import urllib3
urllib3.disable_warnings()
print("Warning: Certificates not verified!")
process_start = False
filename = 'faces.jpg'
video_file_name = ''
curr_mod = 'demo'
video_file = 0
start_counter = 10
process_stand = False
countdown_started = False
process_finish = False
raise_hand = True
total_time_remaining = 0
total_time = 120
total_squat = 0
start_ymin = 0
end_ymin = 0
list_miny = []
start_miny_list = []
xMid = 10
yMid = 10
CONF_THRESHOLD = 0.5
NMS_THRESHOLD = 0.4
IMG_WIDTH = 416
IMG_HEIGHT = 416
COLOR_BLUE = (255, 0, 0)
COLOR_GREEN = (0, 255, 0)
COLOR_RED = (0, 0, 255)
COLOR_WHITE = (255, 255, 255)
COLOR_YELLOW = (0, 255, 255)
def do_something(image):
fontface = cv2.FONT_HERSHEY_SIMPLEX
global process_start, fmin_X, fmin_Y, fmax_X, fmax_Y, hmaxX, hmaxY, hmin_X, hmin_Y
global countdown_started
global start_counter
global total_time_remaining
global xMid, yMid, raise_hand
from random import randint
# file_name = "Test" + str(randint(0, 1)) + ".jpg"
# cv2.imwrite(file_name, image)
if raise_hand:
cv2.putText(image, "Raise your hand above your head", (20, 50), fontface, 1, (0, 0, 255), 2, cv2.LINE_AA)
# api_url_hands = "https://10.150.20.61/powerai-vision/api/dlapis/a322454a-330a-4190-b922-2f4551b5357d"
fontface = cv2.FONT_HERSHEY_SIMPLEX
hmin_X = 0
hmin_Y = 0
minX = 0
minY = 0
rc1 = 0
rc11 = 0
if not process_start:
blob = cv2.dnn.blobFromImage(image, 1 / 255, (IMG_WIDTH, IMG_HEIGHT), [0, 0, 0], 1, crop=False)
# Sets the input to the network
net_hand.setInput(blob)
# Runs the forward pass to get output of the output layers
outs = net_hand.forward(get_outputs_names(net_hand))
# Remove the bounding boxes with low confidence
hand = post_process(image, outs, CONF_THRESHOLD, NMS_THRESHOLD)
# print('[i] ==> # detected faces: {}'.format(len(faces)))
if len(hand) == 1:
print("hand ", hand)
hmin_X = hand[0][0]
print('hmin_X', hmin_X)
hmin_Y = hand[0][1]
print('hmin_Y', hmin_Y)
hmax_X = hand[0][2]
print('hmax_X', hmax_X)
hmax_Y = hand[0][3]
print('hmax_Y', hmax_Y)
blob = cv2.dnn.blobFromImage(image, 1 / 255, (IMG_WIDTH, IMG_HEIGHT), [0, 0, 0], 1, crop=False)
# Sets the input to the network
net.setInput(blob)
# Runs the forward pass to get output of the output layers
outs = net.forward(get_outputs_names(net))
# Remove the bounding boxes with low confidence
faces = post_process(image, outs, CONF_THRESHOLD, NMS_THRESHOLD)
# print('[i] ==> # detected faces: {}'.format(len(faces)))
if len(faces) == 1:
print("faces ", faces)
fmin_X = faces[0][0]
print('fmin_X', fmin_X)
fmin_Y = faces[0][1]
print('fmin_Y', fmin_Y)
fmax_X = faces[0][2]
print('fmax_X', fmax_X)
fmax_Y = faces[0][3]
print('fmax_Y', fmax_Y)
if fmin_X > hmin_X and fmin_Y > hmin_Y and fmin_X > 0 and fmin_Y > 0 and hmin_X > 0 and hmin_Y > 0:
raise_hand = False
# cv2.putText(image, "Hand is above head", (minX, minY), fontface, 1, (0, 255, 255), 1, cv2.LINE_AA)
# cv2.rectangle(image, (minX, minY), (fmax_X, fmax_Y), (0, 255, 0), 2)
# cv2.rectangle(image, (hminX, hminY), (hmaxX, hmaxY), (0, 255, 0), 2)
process_start = True
else:
print('inside else')
cv2.putText(image, "countdown begin in", (xMid - 270, yMid), fontface, 1.8, (0, 0, 255), 3, cv2.LINE_AA)
cv2.putText(image, str(start_counter), (xMid - 30, yMid + 50), fontface, 2, (0, 0, 255), 3, cv2.LINE_AA)
if start_counter > 0:
import time
time.sleep(1)
start_counter = start_counter - 1
print("count down will start in " + str(start_counter))
if start_counter == 0:
countdown_started = True
counter = 0
return image
def draw_predict(frame, left, top, right, bottom):
# Draw a bounding box.
cv2.rectangle(frame, (left, top), (right, bottom), COLOR_YELLOW, 2)
def get_outputs_names(net):
layers_names = net.getLayerNames()
return [layers_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
def post_process(frame, outs, conf_threshold, nms_threshold):
frame_height = frame.shape[0]
frame_width = frame.shape[1]
confidences = []
boxes = []
final_boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > conf_threshold:
center_x = int(detection[0] * frame_width)
center_y = int(detection[1] * frame_height)
width = int(detection[2] * frame_width)
height = int(detection[3] * frame_height)
left = int(center_x - width / 2)
top = int(center_y - height / 2)
confidences.append(float(confidence))
boxes.append([left, top, width, height])
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold)
for i in indices:
i = i[0]
box = boxes[i]
left = box[0]
top = box[1]
width = box[2]
height = box[3]
final_boxes.append(box)
# print('boxes ', final_boxes)
# left, top, right, bottom = refined_box(left, top, width, height)
draw_predict(frame, left, top, left + width, top + height)
# draw_predict(frame, confidences[i], left, top, right, bottom)
return final_boxes
def check_squats(image):
fontface = cv2.FONT_HERSHEY_SIMPLEX
global countdown_started, start_counter, total_time_remaining, total_squat, start_ymin, end_ymin, process_start, total_time, list_miny, process_finish, xMid, yMid, process_stand, raise_hand, start_miny_list
requests.packages.urllib3.disable_warnings()
print(total_time_remaining)
if total_squat >= 5 and total_time_remaining <= total_time:
cv2.putText(image, "Congratulations", (xMid - 250, yMid), fontface, 2, (0, 0, 255), 2, cv2.LINE_AA)
# print("congrats")
raise_hand = True
process_finish = True
countdown_started = False
process_start = False
total_squat = 0
start_counter = 5
total_time_remaining = 0
list_miny = []
start_miny_list = []
elif total_time_remaining > total_time:
cv2.putText(image, "Keep trying you are the best", (xMid - 270, yMid), fontface, 1.2, (0, 0, 255), 3,
cv2.LINE_AA)
process_finish = True
raise_hand = True
countdown_started = False
total_squat = 0
start_counter = 5
process_start = False
list_miny = []
start_miny_list = []
total_time_remaining = 0
else:
from random import randint
# file_name = "Test" + str(randint(0, 1)) + ".jpg"
# cv2.imwrite(file_name, image)
# print('faces in check squats ', faces)
# Create a 4D blob from a frame.
blob = cv2.dnn.blobFromImage(image, 1 / 255, (IMG_WIDTH, IMG_HEIGHT),
[0, 0, 0], 1, crop=False)
# Sets the input to the network
net.setInput(blob)
# Runs the forward pass to get output of the output layers
outs = net.forward(get_outputs_names(net))
# Remove the bounding boxes with low confidence
faces = post_process(image, outs, CONF_THRESHOLD, NMS_THRESHOLD)
print('[i] ==> # detected faces: {}'.format(len(faces)))
print('faces in check squats', faces)
if len(faces) == 0:
pass
# check_squats(image)
else:
list_miny.append(faces[0][1])
# print('list of min y ', list_miny)
fontface = cv2.FONT_HERSHEY_SIMPLEX
# minY = 0
cv2.putText(image, "Total Squats: " + str(total_squat), (xMid - 310, 100), fontface, 1.5, (0, 0, 255), 2,
cv2.LINE_AA)
if len(faces) > 0:
minY = faces[0][1]
if len(list_miny) > 0:
start_ymin = list_miny[0]
# print('start_ymin ', start_ymin)
# print(minY)
if minY < start_ymin + 100:
if process_stand:
if list_miny[0] - 50 < minY < list_miny[0] + 50:
total_squat += 1
end_ymin = 0
process_stand = False
start_ymin = 0
list_miny = []
else:
print("pass")
else:
if minY > end_ymin + 1:
end_ymin = minY
else:
# print('process stand true')
process_stand = True
# End Of Squats counting Logic
total_time_remaining += 1
# time.sleep(1)
else:
pass
counter = 0
return image
def show(image):
global countdown_started, xMid, yMid
global process_finish
height, width, channel = image.shape
xMid = width // 2
yMid = height // 2
if not countdown_started:
image = do_something(image)
else:
if process_start:
process_finish = False
image = check_squats(image)
image = cv2.resize(image, (800, 600))
cv2.imshow('image', image)
ret, jpeg = cv2.imencode('.jpg', image)
return jpeg.tobytes()
camera_port = 0
# camera_port = 'rtsp://admin:maaz@[email protected]'
# camera_port = 'http://192.168.0.102:6677/videofeed?username=&password='
# camera_port = 'http://83.110.154.74:8060/videofeed?username=admin&password=9999'
# Loading the config and weights file
yolo_face_cfg = 'yolov3-face.cfg'
yolo_face_weights = 'yolov3-wider_16000.weights'
yolo_hand_cfg = 'yolov3-tiny.cfg'
yolo_hand_weights = 'yolov3-tiny_8000.weights'
net_hand = cv2.dnn.readNetFromDarknet(yolo_hand_cfg, yolo_hand_weights)
net_hand.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
net_hand.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
net = cv2.dnn.readNetFromDarknet(yolo_face_cfg, yolo_face_weights)
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
video = cv2.VideoCapture(camera_port)
while True:
ret, image = video.read()
show(image)
key = cv2.waitKey(1)
if key == ord('q'):
break
video.release()
cv2.destroyAllWindows()