-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
61 lines (45 loc) · 1.78 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader, random_split
import pytorch_lightning as pl
from torchvision import models, transforms, datasets
from pytorch_lightning.loggers import TensorBoardLogger
import torch
import torch.nn as nn
class MyModel(pl.LightningModule):
def __init__(self, lr=0.001, step_size=20, gamma=0.1):
super().__init__()
self.resnet = models.resnet18(pretrained=False)
num_features = self.resnet.fc.in_features
self.resnet.fc = nn.Linear(num_features, 4)
self.logged_metrics = []
self.criterion = torch.nn.CrossEntropyLoss()
self.lr = lr
self.step_size = step_size
self.gamma = gamma
def forward(self, x):
return self.resnet(x)
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self.forward(x)
loss = self.criterion(y_hat, y)
self.log('train_loss', loss)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self.forward(x)
loss = self.criterion(y_hat, y)
self.log("val_loss", loss)
return loss
def test_step(self, batch, batch_idx):
x, y = batch
y_hat = self.forward(x)
loss = self.criterion(y_hat, y)
return loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=self.step_size, gamma=self.gamma)
return [optimizer], [lr_scheduler]
def on_validation_epoch_end(self):
# Save the logged metrics at the end of each epoch
metrics = self.trainer.callback_metrics.copy()
self.logged_metrics.append(metrics)