-
Install miniconda for python 2.7 (default here)
- cd ~
- wget "http://repo.continuum.io/miniconda/Miniconda-3.5.5-Linux-x86_64.sh"
- bash Miniconda-3.5.5-Linux-x86_64.sh
- Use all defaults... this will create ~/miniconda
-
Create a Python 3 environment to atmospherically correct landsat-8 data
- restart a new terminal to get access to conda
- conda create -n arcsi python=3
- source activate arcsi
- conda install -c https://conda.binstar.org/osgeo arcsi tuiview
- export GDAL_DRIVER_PATH=~/miniconda/envs/arcsi/gdalplugins
- export GDAL_DATA=~/miniconda/envs/arcsi/share/gdal
-
Download a Landsat-8 scene
- Option 1:
- Go to: http://earthexplorer.usgs.gov/
- Login
- Select and download a Scene
- Upload it to an S3 bucket, make the file it public and copy it to ~/data/landsat8 using wget
- Option 2:
- Get an existing scene from our own S3 and copy it over
- cd $MENA_DIR_/data/landsat8
- mkdir ./OutputImages
- mkdir ./LC80090462013357LGN00
- cd LC80090462013357LGN00
- wget "https://s3.amazonaws.com/mena_data/LC80090462013357LGN00.tar.gz"
- tar -xf LC80090462013357LGN00.tar.gz
- rm LC80090462013357LGN00.tar.gz
- cd ..
- Option 1:
-
Atmospheric Correction of Landsat Image
-
Conversion to Radiance [Note: This might not be necessary]
- arcsi.py -s ls8 -f KEA --stats -p RAD -o ./OutputImages -i LC80090462013357LGN00/LC80090462013357LGN00_MTL.txt
-
Conversion to Top of Atmosphere Reflectance [Note: This might not be necessary]
- arcsi.py -s ls8 -f KEA --stats -p RAD TOA -o ./OutputImages -i LC80090462013357LGN00/LC80090462013357LGN00_MTL.txt
-
Convert to Surface Reflectance
- arcsi.py -s ls8 -f KEA --stats -p RAD SREFSTDMDL --aeropro Continental --atmospro MidlatitudeSummer --aot 0.25 -o ./OutputImages -i LC80090462013357LGN00/LC80090462013357LGN00_MTL.txt
-
Convert to tif to avoid requiring KEA Driver if you want to download file to another machine - also reproject to ESPG:4326 while at it
- gdalwarp -of GTIFF -t_srs EPSG:4326 ./OutputImages/LS8_20131223_lat20lon7253_r46p9_rad_srefstdmdl.kea ./OutputImages/LS8_20131223_lat20lon7253_r46p9_rad_srefstdmdl.tif
-
Copy back to scene folder and rename it
- mv ./OutputImages/LS8_20131223_lat20lon7253_r46p9_rad_srefstdmdl.tif LC80090462013357LGN00/LC80090462013357LGN00_SREF.tif
-
Same for other scene [optional]
- arcsi.py -s ls8 -f KEA --stats -p RAD SREFSTDMDL --aeropro Continental --atmospro MidlatitudeSummer --aot 0.25 -o ./OutputImages -i LC80090472013357LGN00/LC80090472013357LGN00_MTL.txt
- gdalwarp -of GTIFF -t_srs EPSG:4326 ./OutputImages/LS8_20131223_lat19lon7286_r47p9_rad_srefstdmdl.kea ./LC80090472013357LGN00/LC80090472013357LGN00_SREF.tif
-
Reproject BQA band [Not necessary anymore]
- gdalwarp -t_srs EPSG:4326 ./LC80090472013357LGN00/LC80090472013357LGN00_BQA.tif ./LC80090472013357LGN00/LC80090472013357LGN00_BQA_4326.tif
-
Generate Composite for V&V [ 4-3-2 and rest optional]
- landsat8_composite_toa.py --scene LC80090472013357LGN00 --red 4 --green 3 --blue 2
- landsat8_composite_toa.py --scene LC80090472013357LGN00 --red 5 --green 6 --blue 4
- landsat8_composite_toa.py --scene LC80090472013357LGN00 --red 7 --green 5 --blue 4
-
Generate water map, vectors and browse image
- landsat8_toa_watermap.py --scene LC80090472013357LGN00 -v
- landsat8_to_topojson.py --scene LC80090472013357LGN00 --vrt haiti_hand.vrt -v
- landsat8_browseimage.py --scene LC80090472013357LGN00 -v
-
-
Process Landsat Image (Assuming a atmospherically corrected EPSG:4326 tif file in given Landsat8 directory)
- cd $MENA_DIR/python
- landsat8_to_topojson.py --scene LC80090462013357 --vrt haiti_hand.vrt
- NOTE:
- visualize surface_water.json with mapshaper.org or geojson.io
- visualize surface_water.osm with JOSM to generate a reference water trace
-
Process MODIS Imagery
- cd $MENA_DIR/python
- modis.py -y 2012 -d 234 -t 080W020N -p 2 -v