-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmitliag_pm.m
151 lines (131 loc) · 4.06 KB
/
mitliag_pm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
function [U, opt_out] = mitliag_pm(Y, r, params)
%MITLIAG_PM This is an implementation of the Power Method (PM).
% As described in "Memory Limited, Streaming PCA" by Mitliagkas et al.
%
% Link: https://arxiv.org/pdf/1307.0032.pdf
%
% Author: Andreas Grammenos ([email protected])
%
% Last touched date: 03/06/2020
%
% License: GPLv3
%
fprintf('\n ** Running Mitliagkas Power Method...\n')
% ambient dim defined by our input matrix Y
[n, Ti] = size(Y);
% set project data to be equal to zero
opt_out.Yr = 0;
% check if n < r or n == 1
if n == 1 || n < r
error(" ** ERR: Ambient dimension must be > 1 and r < n **");
end
% if we do not have params, set params to default values.
if nargin < 3
params.no_err = 1;
params.no_final_err = 1;
params.blk_size = n;
params.use_blk_err = 1;
% params was supplied, check if we have all entries otherwise
% set missing to defaults.
else
% check if no error flag is present
if ~isfield(params, 'no_err')
params.no_err = 1;
end
% check if use block error flag is present
if ~isfield(params, 'use_blk_err')
params.use_blk_err = 1;
end
% check if no projected data flag is present
if ~isfield(params, 'no_final_err')
params.no_final_err = 0;
end
% check if batch block size is present
if ~isfield(params, 'blk_size')
params.blk_size = n;
end
end
% set the block, depending on argument
if params.blk_size < n
B = n;
else
if params.blk_size < n
fprintf("\n !! WARN: Block size must be at least n !!\n");
B = n;
else
B = params.blk_size;
end
end
% check if Ti < B, in which case we cannot run it
if Ti < B
error("\n Block size must be lower than the number of columns");
end
K = floor(Ti/B); % Number of blocks
cnt = 1; % index for error block align
% preallocate based on no error run and block error
if params.no_err == 0
if params.use_blk_err == 1
opt_out.T = nan(1, K); % T steps for error log
opt_out.ErrFro = nan(1, K); % Fro normalised error with T
else
opt_out.T = 1:Ti; % T steps for error log
opt_out.ErrFro = nan(1, Ti); % Fro normalised error with T
end
% else if errors are disabled just set them to zero
else
opt_out.T = 0;
opt_out.ErrFro = 0;
end
% output the number of blocks and their size
fprintf([' ** Total number of blocks (k): %d ', ...
'with Block size of: %d\n'], K, B);
% Random initialization
U = orth(randn(n, r));
% start timing
ts = tic;
for k = 1:K
% update the previous subspace estimation
U_old = U;
% indices for current block
min_t = ((k-1)*B)+1;
max_t = k*B;
% initialise the temporary place-holder
temp = zeros(n,r);
for i = 1:B
index = (k-1)*B+i;
temp = temp+1/B*(Y(:,index)*(Y(:,index))')*U(:, 1:r);
end
[U, ~, ~] = svds(temp, r);
% Mitliagkas Power Method Errors start
if params.no_err == 0
% use the block error
if params.use_blk_err == 1
% generate current Yr estimation
YrHat_c = (U*U')*Y(:, 1:k*B);
% Frobenius norm incremental error, per block at
% at (k-1)B:kB normalised with current T.
temp = sum(sum((Y(:, 1:max_t)-YrHat_c).^2, 1));
opt_out.ErrFro(cnt) = temp/max_t;
opt_out.T(cnt) = max_t;
cnt = cnt + 1;
else
% generate current Yr estimation
YrHat_c = (U_old*U_old')*Y(:, 1:k*B);
% Frobenius norm incremental error, per column in the block
% at (k-1)B:kB normalised with current T.
temp = cumsum(sum((Y(:, 1:max_t)-YrHat_c).^2, 1));
opt_out.ErrFro(cnt:cnt+B-1) = temp(min_t:max_t)./(min_t:max_t);
cnt = cnt + B;
end
end
% Mitliagkas Power Method errors end
end
% check if we require the projected data
if params.no_err == 0
if params.no_final_err == 0
opt_out.Yr = (U*U')*Y(:, 1:k*B);
end
end
% finally, set current elapsed time
opt_out.t = my_toc(ts);
end