forked from skypilot-org/skypilot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsky.yaml
131 lines (110 loc) · 4.41 KB
/
sky.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Example: a distributed DeepSpeed job (DeepSpeed-Chat) on 2 VMs.
#
# This takes care constructing a "hostfile" to pass to DeepSpeed.
#
# If running on Kubernetes, use the nvidia/cuda:12.1.1-devel-ubuntu20.04 image
# because DeepSpeed requires nvcc.
#
# Usage:
#
# $ sky launch sky.yaml -r --down -c ds
#
# If running on Kubernetes:
# $ sky launch sky.yaml -r --down -c ds --cloud kubernetes --image nvidia/cuda:12.1.1-devel-ubuntu20.04
#
# # Optional: After the job starts running, you can log into the two nodes and
# # check gpustat:
# $ ssh ds
# $ gpustat -i
# $ ssh ds-worker1
# $ gpustat -i
resources:
accelerators: A100:1 # GCP, Lambda
# accelerators: A100-80GB:1 # Azure, GCP, SCP
# accelerators: A10G:1 # AWS. Will OOM for (1) single_node/run_1.3b_lora.sh (2) multi_node/run_66b.sh.
# accelerators: T4:1 # AWS, Azure, GCP. Will OOM for (1) single_node/run_1.3b_lora.sh (2) multi_node/run_66b.sh.
# image_id: docker:nvidia/cuda:12.1.1-devel-ubuntu20.04 # Use this image if running on Kubernetes
num_nodes: 2
envs:
MY_VAR_1: "hello"
MY_VAR_2: "world"
# List of env vars to propagate to all nodes in deepspeed. If you add an env above, add it to this list.
DEEPSPEED_ENVS: "MY_VAR_1,MY_VAR_2,SKYPILOT_NODE_RANK"
setup: |
if ! command -v git &> /dev/null
then
echo "git is not installed. Installing git..."
sudo apt-get update
sudo apt-get install -y git
fi
git clone https://github.com/microsoft/DeepSpeedExamples.git || true
cd DeepSpeedExamples
git checkout d7c42b4f34df91035e7ed3e0c51500bb53d0bc71
conda activate deepspeed
if [ $? -eq 0 ]; then
echo 'conda env exists'
else
conda create -n deepspeed python=3.8 -y
conda activate deepspeed
pip install deepspeed==0.14.4
cd applications/DeepSpeed-Chat
pip install -r requirements.txt
pip install transformers==4.44.0
# Required by DeepSpeed in multi-node settings.
#
# NOTE(skypilot): DeepSpeed uses `pdsh` to log into each node and calls
# `ninja --version`; so it has to be installed system-wide rather than in
# the above 'deepspeed' conda env.
sudo apt-get update
sudo apt-get -y install pdsh ninja-build
fi
file_mounts:
# Required for DeepSpeed's passwordless SSH (run commands on nodes).
~/.ssh/id_rsa: ~/.ssh/sky-key
run: |
cd DeepSpeedExamples
conda activate deepspeed
# Launch on the first node only
if [ "${SKYPILOT_NODE_RANK}" == "0" ]; then
# Prepare a hostfile.
HOSTFILE_PATH=/tmp/hostfile.${SKYPILOT_TASK_ID}
python -c "import os;n_gpus=os.environ['SKYPILOT_NUM_GPUS_PER_NODE'];print('\n'.join([f'{ip} slots={n_gpus}' for ip in os.environ['SKYPILOT_NODE_IPS'].splitlines()]))" > ${HOSTFILE_PATH}
# Generate .deepspeed_env to propagate env vars to all workers spawned by DeepSpeed.
echo "Generating .deepspeed_env"
python3 -c 'import os; f = open(".deepspeed_env", "w"); f.write("\n".join(["{}=\"{}\"".format(var, os.getenv(var, "")) for var in os.getenv("DEEPSPEED_ENVS").split(",")])); f.write("\n"); f.close()'
echo "*******************************************"
echo "Hostfile: ${HOSTFILE_PATH}"
cat ${HOSTFILE_PATH}
echo "*******************************************"
################ Your launch command goes here ################
cd applications/DeepSpeed-Chat/training/step1_supervised_finetuning/
# Adapted from: training_scripts/single_node/run_1.3b_lora.sh
# Note the additional argument: --hostfile $HOSTFILE_PATH
# Alternatively, you can move HOSTFILE_PATH to /job/hostfile:
# sudo mkdir -p /job; sudo chmod 777 /job; mv ${HOSTFILE_PATH} /job/hostfile
OUTPUT_PATH=./output
mkdir -p $OUTPUT_PATH
deepspeed \
--hostfile $HOSTFILE_PATH \
main.py \
--data_path Dahoas/rm-static Dahoas/full-hh-rlhf Dahoas/synthetic-instruct-gptj-pairwise yitingxie/rlhf-reward-datasets \
--data_split 2,4,4 \
--model_name_or_path facebook/opt-1.3b \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 8 \
--max_seq_len 512 \
--learning_rate 1e-3 \
--weight_decay 0.1 \
--num_train_epochs 16 \
--gradient_accumulation_steps 1 \
--lr_scheduler_type cosine \
--num_warmup_steps 0 \
--seed 1234 \
--zero_stage 0 \
--lora_dim 128 \
--lora_module_name decoder.layers. \
--only_optimize_lora \
--deepspeed \
--output_dir $OUTPUT_PATH \
| tee $OUTPUT_PATH/training.log
fi