forked from skypilot-org/skypilot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhorovod_distributed_tf_app.py
62 lines (51 loc) · 2.17 KB
/
horovod_distributed_tf_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# TODO(zhwu): Fix this for #272.
import json
from typing import Dict, List
import time_estimators
import sky
IPAddr = str
with sky.Dag() as dag:
# Total Nodes, INCLUDING Head Node
num_nodes = 2
# The setup command. Will be run under the working directory.
setup = 'pip3 install --upgrade pip && \
pip3 install ray[default] && \
git clone https://github.com/michaelzhiluo/horovod-tf-resnet.git && \
cd horovod-tf-resnet && chmod +x setup.sh && ./setup.sh'
# Post setup function. Run after `ray up *.yml` completes. Returns dictionary of commands to be run on each corresponding node.
# List of IPs, 0th index denoting head worker
def post_setup_fn(ip_list: List[IPAddr]) -> Dict[IPAddr, str]:
command_dict = {}
head_run_str = "ssh-keygen -f ~/.ssh/id_rsa -P \"\" <<< y"
if len(ip_list) > 1:
for i, ip in enumerate(ip_list[1:]):
append_str = f" && cat ~/.ssh/id_rsa.pub | ssh -i ~/ray_bootstrap_key.pem -o StrictHostKeyChecking=no ubuntu@{ip} \"mkdir -p ~/.ssh && chmod 700 ~/.ssh && cat >> ~/.ssh/authorized_keys && chmod 600 ~/.ssh/authorized_keys\""
head_run_str = head_run_str + append_str
return {ip_list[0]: head_run_str}
# The command to run. Will be run under the working directory.
def run_fn(ip_list: List[IPAddr]) -> Dict[IPAddr, str]:
run_dict = {}
ip_str = "localhost:1"
for i, ip in enumerate(ip_list[1:]):
append_str = f",{ip}:1"
ip_str = ip_str + append_str
return {
ip_list[0]: f"cd horovod-tf-resnet && \
horovodrun -np {str(len(ip_list))} -H {ip_str} python3 horovod_mnist.py",
}
run = run_fn
train = sky.Task(
'train',
setup=setup,
post_setup_fn=post_setup_fn,
num_nodes=num_nodes,
run=run,
)
train.set_inputs('gs://cloud-tpu-test-datasets/fake_imagenet',
estimated_size_gigabytes=70)
train.set_outputs('resnet-model-dir', estimated_size_gigabytes=0.1)
train.set_resources({
sky.Resources(sky.AWS(), 'p3.2xlarge'),
})
dag = sky.Optimizer.optimize(dag)
sky.launch(dag)