forked from skypilot-org/skypilot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnccl_test.yaml
42 lines (34 loc) · 1.43 KB
/
nccl_test.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# This measures NCCL all reduce performance with Torch.
# Usage:
# $ sky launch -c nccl --use-spot nccl_test.yaml
# Example output
# (head, rank=0, pid=17654) [nccl-ebd1-head-8x3wqw6d-compute:0]:1
# (head, rank=0, pid=17654) [nccl-ebd1-head-8x3wqw6d-compute:0]:2
# (head, rank=0, pid=17654) [nccl-ebd1-head-8x3wqw6d-compute:0]:3
# (head, rank=0, pid=17654) [nccl-ebd1-head-8x3wqw6d-compute:0]:4
# (head, rank=0, pid=17654) [nccl-ebd1-head-8x3wqw6d-compute:0]:5
# (head, rank=0, pid=17654) [nccl-ebd1-head-8x3wqw6d-compute:0]:The average bandwidth of all_reduce with a 4.0GB payload (5 trials, 16 ranks):
# (head, rank=0, pid=17654) [nccl-ebd1-head-8x3wqw6d-compute:0]: algbw: 2.053 GBps (16.4 Gbps)
# (head, rank=0, pid=17654) [nccl-ebd1-head-8x3wqw6d-compute:0]: busbw: 3.850 GBps (30.8 Gbps)
# (head, rank=0, pid=17654) [nccl-ebd1-head-8x3wqw6d-compute:0]:
name: torch-nccl-allreduce
num_nodes: 2
resources:
accelerators: A100:8
use_spot: True
setup: |
pip install torch
git clone https://github.com/stas00/ml-engineering.git
run: |
cd ml-engineering/network/benchmarks
NNODES=`echo "$SKYPILOT_NODE_IPS" | wc -l`
MASTER_ADDR=`echo "$SKYPILOT_NODE_IPS" | head -n1`
python -u -m torch.distributed.run \
--nproc_per_node $SKYPILOT_NUM_GPUS_PER_NODE \
--nnodes $NNODES \
--rdzv_endpoint $MASTER_ADDR:8888 \
--rdzv_backend c10d \
--max_restarts 0 \
--role `hostname -s`: \
--tee 3 \
all_reduce_bench.py