-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdownsample.py
52 lines (39 loc) · 1.36 KB
/
downsample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
import cv2
import matplotlib.pyplot as plt
def create_dir(dir_name):
try:
os.stat(dir_name)
except:
os.mkdir(dir_name)
## Create directory to store all the compressed frames
FRAMES_DIR = 'action_frames'
COM_FRAMES_DIR = 'compressed_action_frames'
X_CROP, Y_CROP = 350,30
VISUALIZE = False
create_dir(COM_FRAMES_DIR)
## Go over all the videos in the folder
for video_name in os.listdir(FRAMES_DIR):
print(video_name)
VIDEO_DIR = os.path.join(FRAMES_DIR, video_name)
## Go over all the action folders
for action_path in os.listdir(VIDEO_DIR):
ACTION_DIR = os.path.join(VIDEO_DIR, action_path)
NEW_ACTION_DIR = os.path.join(COM_FRAMES_DIR, "%s>%s"%(video_name, action_path))
create_dir(NEW_ACTION_DIR) ## Unique name to simplify training code
## Go over all the frames for that action
for frame_path in os.listdir(ACTION_DIR):
frame = cv2.imread(os.path.join(ACTION_DIR, frame_path))
h, w, _ = frame.shape
## Crop the frame
cropped_frame = frame[Y_CROP:h-Y_CROP, X_CROP:w-X_CROP]
## Downsample by a factor of 4
downsampled_frame = cv2.resize(cropped_frame, (0,0), fx=0.25, fy=0.25)
## Visualize for debugging
if VISUALIZE:
plt.figure()
plt.imshow(cv2.cvtColor(downsampled_frame, cv2.COLOR_BGR2RGB))
plt.show()
input("")
plt.close()
cv2.imwrite('%s/%s'%(NEW_ACTION_DIR,frame_path), downsampled_frame)