-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmain.cpp
284 lines (222 loc) · 7.08 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
/*
May 2015
Authors:
Ankit Dhall Yash Chandak
TO DO:
-set capture frame size in VideoCapture object
-take lines only closer to the region of the vanishing points
- plug the prevRes in the eqns for new frame and consider lines only with error < |epsilon|
-cluster more if more than 2 vanishing points are present (advanced)
-refactor the CODE
-error calculation, remove so many divisions!
*/
#include <iostream>
#include <armadillo>
#include <string>
#include "opencv2/core/core.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <vector>
#include <fstream>
#include <math.h>
#include <ctime>
//add OpenCV and Armadillo namespaces
using namespace cv;
using namespace std;
using namespace arma;
class vanishingPt
{
public:
cv::Mat image, img, gray;
cv::Mat frame;
vector< vector<int> > points;
mat A,b, prevRes;
mat Atemp, btemp, res, aug, error, soln;
//ofstream out1, out2;
float epsilon;
//store slope (m) and y-intercept (c) of each lines
float m,c;
//store minimum length for lines to be considered while estimating vanishing point
int minlength;
//temporary vector for intermediate storage
vector<int> temp;
//store (x1, y1) and (x2, y2) endpoints for each line segment
vector<cv::Vec4i> lines_std;
//video capture object from OpenCV
cv::VideoCapture cap;
//to store intermediate errors
double temperr;
//constructor to set video/webcam and find vanishing point
vanishingPt()
{
cv::namedWindow("win", 2);
cv::namedWindow("Lines", 2);
// to calculate fps
clock_t begin, end;
//read from video file on disk
//to read from webcam initialize as: cap = VideoCapture(int device_id);
//cap = VideoCapture(1);
cap = VideoCapture("road.m4v");
if( cap.isOpened() )//check if camera/ video stream is available
{
//get first frame to intialize the values
cap.read(frame);
image= cv::Mat(cv::Size(frame.rows,frame.cols), CV_8UC1, 0.0);
}
// define minimum length requirement for any line
minlength = image.cols * image.cols * 0.001 ;
int flag=0;
while( cap.isOpened() )//check if camera/ video stream is available
{
if ( ! cap.grab() )
continue;
if(!cap.retrieve(img))
continue;
//it's advised not to modify image stored in the buffer structure of the opencv.
frame = img.clone();
//to calculate fps
begin = clock();
cv::cvtColor(frame,image , cv::COLOR_BGR2GRAY);
//resize frame to 480x320
cv::resize(image, image, cv::Size(480,320));
//equalize histogram
cv::equalizeHist(image, image);
//initialize the line segment matrix in format y = m*x + c
init(image, prevRes);
//draw lines on image and display
makeLines(flag);
//approximate vanishing point
eval();
//to calculate fps
end = clock();
cout<<"fps: "<<1/(double(end-begin)/CLOCKS_PER_SEC)<<endl;
//hit 'esc' to exit program
int k = cv::waitKey(1);
if ( k==27 )
break;
}
}
void init(cv::Mat image, mat prevRes)
{
//create OpenCV object for line segment detection
cv::Ptr<cv::LineSegmentDetector> ls = cv::createLineSegmentDetector(cv::LSD_REFINE_STD);
//initialize
lines_std.clear();
//detect lines in image and store in linse_std
//store (x1, y1) and (x2, y2) endpoints for each line segment
ls->detect(image, lines_std);
// Show found lines
cv::Mat drawnLines (image);
for(int i=0; i<lines_std.size(); i++)
{
//ignore if almost vertical
if ( abs(lines_std[i][0]-lines_std[i][2]) < 10 || abs(lines_std[i][1]-lines_std[i][3]) < 10) //check if almost vertical
continue;
//ignore shorter lines (x1-x2)^2 + (y2-y1)^2 < minlength
if( ((lines_std[i][0]-lines_std[i][2])*(lines_std[i][0]-lines_std[i][2]) +(lines_std[i][1]-lines_std[i][3])*(lines_std[i][1]-lines_std[i][3])) < minlength)
continue;
//store valid lines' endpoints for calculations
for(int j=0; j<4; j++)
{
temp.push_back(lines_std[i][j]);
}
points.push_back(temp);
temp.clear();
}
ls->drawSegments(drawnLines, lines_std);
cv::imshow("Lines", drawnLines);
//cout<<"Detected:"<<lines_std.size()<<endl;
//cout<<"Filtered:"<<points.size()<<endl;
}
void makeLines(int flag)
{
// to solve Ax = b for x
A = zeros<mat>(points.size(), 2);
b = zeros<mat>(points.size(), 1);
//convert given end-points of line segment into a*x + b*y = c format for calculations
//do for each line segment detected
for(int i=0; i<points.size(); i++)
{
A(i,0)=-(points[i][3]-points[i][1]); //-(y2-y1)
A(i,1)=(points[i][2]-points[i][0]); //x2-x1
b(i,0)=A(i,0)*points[i][0]+A(i,1)*points[i][1]; //-(y2-y1)*x1 + (x2-x1)*y1
}
}
//estimate the vanishing point
void eval()
{
//stores the estimated co-ordinates of the vanishing point with respect to the image
soln= zeros<mat>(2,1);
//initialize error
double err = 9999999999;
//calculate point of intersection of every pair of lines and
//find the sum of distance from all other lines
//select the point which has the minimum sum of distance
for(int i=0; i<points.size(); i++)
{
for(int j=0; j<points.size(); j++)
{
if(i >= j)
continue;
//armadillo vector
uvec indices;
//store indices of lines to be used for calculation
indices << i << j;
//extract the rows with indices specified in uvec indices
//stores the ith and jth row of matrices A and b into Atemp and btemp respectively
//hence creating a 2x2 matrix for calculating point of intersection
Atemp = A.rows(indices);
btemp = b.rows(indices);
//if lines are parallel then skip
if(rank(Atemp) != 2)
continue;
//solves for 'x' in A*x = b
res = calc(Atemp, btemp);
if(res.n_rows == 0 || res.n_cols == 0)
continue;
// calculate error assuming perfect intersection is
error = A*res - b;
//reduce size of error
error = error/1000;
// to store intermediate error values
temperr = 0;
//summation of errors
for(int i=0; i<error.n_rows ; i++)
temperr+=(error(i,0)*error(i,0))/1000;
//scale errors to prevent any overflows
temperr/=1000000;
//if current error is smaller than previous min error then update the solution (point)
if(err > temperr)
{
soln = res;
err = temperr;
}
}
}
//cout<<"\n\nResult:\n"<<soln(0,0)<<","<<soln(1,0)<<"\nError:"<<err<<"\n\n";
// draw a circle to visualize the approximate vanishing point
if(soln(0,0) > 0 && soln(0,0) < image.cols && soln(1,0) > 0 && soln(1,0) < image.rows)
cv::circle(image, Point(soln(0,0), soln(1,0)), 25, cv::Scalar(0,0,255), 10);
cv::imshow("win", image);
//flush the vector
points.clear();
//toDo: use previous frame's result to reduce calculations and stabilize the region of vanishing point
prevRes = soln;
}
//function to calculate and return the intersection point
mat calc(mat A, mat b)
{
mat x = zeros<mat>(2,1);
solve(x,A,b);
return x;
}
};
int main()
{
// make object
vanishingPt obj;
cv::destroyAllWindows();
return 0;
}