-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun-tflite.py
executable file
·67 lines (51 loc) · 1.78 KB
/
run-tflite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#!/usr/bin/env python3
import tensorflow.lite as lite
import time
import numpy as np
import PIL
from coco import image_classes
ms = lambda: int(round(time.time() * 1000))
#model_path = "ssd_mobilenet_v1_coco_2018_01_28/foo.tflite"
model_path = "ssd_mobilenet_v1_0.75_depth_quantized_300x300_coco14_sync_2018_07_18.tflite"
is_quant = "quant" in model_path.lower()
def get_mobilenet_input(f, out_size=(300, 300), is_quant=True):
img = np.array(PIL.Image.open(f).resize(out_size))
if not(is_quant):
img = img.astype(np.float32) / 128 - 1
return np.array([img])
def print_coco_label(cl_id, t):
print("class: {}, label: {}, time: {:,} ms".format(cl_id, image_classes[cl_id], t))
def print_output(inp_files, res):
boxes, classes, scores, num_det=res
for i, fname in enumerate(inp_files):
n_obj = int(num_det[i])
print("{} - found objects:".format(fname))
for j in range(n_obj):
cl_id = int(classes[i][j]) + 1
label = image_classes[cl_id]
score = scores[i][j]
if score < 0.5:
continue
box = boxes[i][j]
print(" ", cl_id, label, score, box)
ip = lite.Interpreter(model_path=model_path)
ip.allocate_tensors()
inp_id = ip.get_input_details()[0]["index"]
out_det = ip.get_output_details()
out_id0 = out_det[0]["index"]
out_id1 = out_det[1]["index"]
out_id2 = out_det[2]["index"]
out_id3 = out_det[3]["index"]
image_f = 'dog.jpg'
img = get_mobilenet_input(image_f, is_quant=is_quant)
for i in range(1,100):
t0 = ms()
ip.set_tensor(inp_id, img)
ip.invoke()
tt = ms() - t0
print("Time:", tt, "ms")
boxes = ip.get_tensor(out_id0)
classes = ip.get_tensor(out_id1)
scores = ip.get_tensor(out_id2)
num_det = ip.get_tensor(out_id3)
print_output([f], [boxes, classes, scores, num_det])