-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdivisors.tex
179 lines (157 loc) · 6.01 KB
/
divisors.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
\documentclass[shadesubsections,compress,14pt,mathserif]{beamer}
\usepackage[danish]{babel}
\usepackage{tikz}
\usetikzlibrary{shapes, positioning}
\usenavigationsymbolstemplate{}
\usepackage{pgfplots}
\usepackage[absolute,overlay]{textpos}
%\usepackage[T1]{fontenc}
%\usepackage{fourier}
% Dokumentets sprog
%\usepackage{mathtools}
%\usepackage{pxfonts}
\usepackage{eulervm}
% Class options include: notes, notesonly, handout, trans,
% hidesubsections, shadesubsections,
% inrow, blue, red, grey, brown
% Theme for beamer presentation.
%\usepackage{beamertheme}
% Other themes include: beamerthemebars, beamerthemelined,
% beamerthemetree, beamerthemetreebars
\newcommand{\prot}{\mathbf{P}}
\newcommand{\adv}{\ensuremath{\mathcal A}}
\newcommand{\aggdeg}[1]{\mathfrak{d}(#1)}
\renewcommand{\deg}{\mathrm{deg}}
\newcommand{\xor}{\ensuremath{\oplus}}
\newcommand{\plonk}{\ensuremath{\mathcal{P} \mathfrak{lon}\mathcal{K}}}
\newcommand{\F}{\ensuremath{\mathbb F}}
\newcommand{\set}[1]{\ensuremath{\left\{#1\right\}}}
\newcommand{\sett}[2]{\ensuremath{\left\{#1\right\}_{#2}}}
\newcommand{\enc}[1]{\ensuremath{\left[#1\right ]}}
\newcommand{\cm}{\ensuremath{\mathsf{cm}}}
\newcommand{\open}[1]{\ensuremath{\mathsf{open}(#1)}}
\newcommand{\verify}[1]{\ensuremath{\mathsf{verify}(#1)}}
\newcommand{\defeq}{\ensuremath{:=}}
\newcommand{\helper}{\ensuremath{\mathcal{H}}}
\newcommand{\ver}{\ensuremath{\mathcal{V}}}
\newcommand{\prv}{\ensuremath{\mathcal{P}}}
\newcommand{\polysofdeg}[1]{\F_{< #1}[X]}
\newcommand{\polys}{\F[X]}
\newcommand{\acc}{{\mathbf{acc}}}
\newcommand{\ideal}{\mathbf{I}}
\newcommand{\gen}{\alpha}
\newcommand{\plookup}{\mathsf{plookup}}
%\setbeamersize{text margin left=3mm,text margin right=3mm}
\title{\large{Into the weeds of EC pairings}} % Enter your title between curly braces
\author{\small{Ariel Gabizon}\\ % Enter your name between curly braces
\tt{\footnotesize{\textbf{Aztec}) } } }% Enter your institute name between curly braces
\date{} % Enter the date or \today between curly braces
%\usefonttheme{professionalfonts}
%\usefonttheme[onlymath]{serif}
\begin{document}
\boldmath
% Creates title page of slide show using above information
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
\frametitle{Divisors on $k(X)$} % insert frame title between curly braces
% \textbf{Preprocessing/inputs:} Predefined polynomials $g_1,\ldots,g_t\in \polysofdeg{d}$\\
% \textbf{Range:} $H\subset\F$.\\ \pause
% \vspace{0.4in}
% \textbf{Protocol:}
$P\defeq k\cup\infty$.\pause \\
\vspace{0.2in}
A divisor is a formal sum
$$D=\sum_{a\in P}d_a \cdot [a]$$
where $d_a\in\mathbb{Z}$ is non-zero except for finitely many $a$.
% \begin{itemize}
%
% \item
% \item At end, $\ver$ asks $\ideal$ if some identity holds between $\set{f_1,\ldots,f_\ell,g_1,\ldots,g_t}$ \textbf{\textit{on $H$}}.
%
% \end{itemize}
%
\end{frame}
\begin{frame}
\frametitle{Evaluating at $\infty$ via projective space}
Evaluating $f(x)=\frac{x^2+x+1}{3x^2+1}$ at $\infty$:\\ \pause
\vspace{0.2in}
\textbf{Homogenize:} $--> \frac{x^2+xz+z^2}{3x^2+z^2}$ \\ \pause
\vspace{0.2in}
\textbf{Evaluate at $(x,z)=(1,0)$:}$\frac{1}{3}$
\end{frame}
\begin{frame}
\frametitle{Divisors of functions} % insert frame title between curly braces
$f\in k(X)$
$$div(f)=\sum o_a(f)\cdot [a]$$
where $o_a(f)$ is the order of $f$ at $a$:\pause
$$f=(x-a)^{o_a(f)} (g(x))$$
where $g(a)\neq 0,\infty$ \\ \pause
\vspace{0.2in}
How to compute $o_{\infty}(f)$? If $f=g/h$ for polys $g,h$, $o_{\infty}(f) = deg(h)-deg(g)$
\end{frame}
\begin{frame}
\textbf{example:}
$$f=\frac{(X-1)^2(X-2)}{X-3}$$
$div(f)=2\cdot[1]+[2]-[3]-2[\infty]$.\pause
Define $deg(D)\defeq \sum_{a\in P} d_a$.\\
For $f\in k(X)$ we always have $deg(div(f))=0$.
\end{frame}
\begin{frame}
\frametitle{The divisor class group}
\begin{itemize}
\item The set of divisors is a group under coordinate wise addition\pause
\item The set of divisors of degree zero is a subgroup $Div^0$ under this rule.\pause
\item If $D=div(f)$ for $f\in k(x)$ we call $D$ a principal divisor.\pause
\item The \emph{divisor class group of degree 0} is: $Div^0/$(principal divisors).
\end{itemize}
Is this an interesting group?\pause
No, its trivial!
But this gets more interesting when we do it over an elliptic curve instead of a field.
\end{frame}
\begin{frame}
Suppose our curve $E$ is $y^2=x^3-x$.
Instead of $k(X)$ we'll work now over $H\defeq k(x,y)/(y^2-x^3-x)$. \\ \pause
\vspace{0.2in}
For example in $H$, $x=y^2\cdot\frac{1}{x^2-1}$.\\ \pause
\vspace{0.2in}
Now, a divisor is $D=\sum_{P\in E}d_j [P]$,
and for $f\in H$
$div(f)=\sum_{P\in E} o_P(f)[P]$\\ \pause
How to compute $o_P(f)$? \\
$$f=u^{o_P(f)} \cdot g$$
for $g$ with $g(P)\neq 0,\infty$
and $u$ with $o_P(u)=1$.
\end{frame}
\begin{frame}
It can be shown, like in $k(X)$ we always have $deg(div(f))=0$.\\ \pause
\vspace{0.2in}
\textbf{Example:$f=x$}
Compute $div(x)$.
Can be shown $o_{\infty}(x) =-2$,$o_{(0,0)}(y)=1$.\\ \pause
\vspace{0.2in}
Since $x=y^2\cdot\frac{1}{x^2-1}$, we have $o_{(0,0)} (x)= 2$.\\
\vspace{0.2in}
So $div(x) = 2([0,0]) - 2[\infty]$.
\end{frame}
\begin{frame}
\frametitle{The cool theorem}
As before, we can define $C\defeq Div^0/(\textrm{principal divisors})$.\\ \pause
\vspace{0.2in}
It turns out $C$ is isomorphic to $E$ as a group!\\ \pause
\vspace{0.2in}
\end{frame}
\begin{frame}
\textbf{Proof sketch:}
We will show that every divisor $D$ of degree zero
can be written as $D= div(g)+ [P]-[\infty]$.\\ \pause
\vspace{0.2in}
The idea is that divisors of line functions allow us to compress two points into one:
If we have $[P_1]+[P_2]$ as part of divisor
and $l(x,y)$ is the line passing through $P_1,P_2$
then
$$div(l)=[P_1]+[P_2]+[P_3]-3[\infty]$$\\ \pause
So can switch: $[P_1]+[P_2]--> div(l)-[P_3]-3\cdot [\infty]$
\end{frame}
\end{document}