-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlookupsstarksessions23.tex
211 lines (197 loc) · 7.59 KB
/
lookupsstarksessions23.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
\documentclass[shadesubsections,compress,14pt,mathserif]{beamer}
\usepackage[danish]{babel}
\usepackage{tikz}
\usetikzlibrary{shapes, positioning}
\usenavigationsymbolstemplate{}
% \usepackage{pgfplots}
\usepackage[absolute,overlay]{textpos}
\usepackage{amsthm,amsfonts,amsmath}
%\usepackage[T1]{fontenc}
% \usepackage{fullpage}
% Dokumentets sprog
%\usepackage{mathtools}
%\usepackage{pxfonts}
\usepackage{eulervm}
\usepackage{numdef,graphicx}
\usepackage{framed}
% Class options include: notes, notesonly, handout, trans,
% hidesubsections, shadesubsections,
% inrow, blue, red, grey, brown
% Theme for beamer presentation.
%\usepackage{beamertheme}
% Other themes include: beamerthemebars, beamerthemelined,
% beamerthemetree, beamerthemetreebars
% \usepackage[latexcolors]
\everymath{\color{purple}}
\newcommand{\adv}{\ensuremath{\mathcal A}}
\newcommand{\F}{\ensuremath{{\mathbb F}}}
\newcommand{\Z}{\ensuremath{{\mathbb Z}}\xspace}
\newcommand{\Fclosure}{\ensuremath{{\overline{\mathbb{F}}}_p}}
\newcommand{\set}[1]{\ensuremath{\left\{#1\right\}}}
\newcommand{\sett}[2]{\ensuremath{\left\{#1\right\}_{#2}}}
% \newcommand{\enc}[1]{\ensuremath{\left[#1\right ]}}
\newcommand{\enc}[1]{\ensuremath{#1\cdot G}}
\newcommand{\kzg}[1]{\ensuremath{\enc{#1(x)}}}
\newcommand{\cm}{\ensuremath{\mathsf{cm}}}
\newcommand{\open}[1]{\ensuremath{\mathsf{open}(#1)}}
\newcommand{\verify}[1]{\ensuremath{\mathsf{verify}(#1)}}
\newcommand{\defeq}{\ensuremath{:=}}
\newcommand{\helper}{\ensuremath{\mathcal{H}}}
\newcommand{\ver}{\ensuremath{\mathcal{V}}}
\newcommand{\prv}{\ensuremath{\mathcal{P}}}
\newcommand{\polysofdeg}[1]{\F_{< #1}[X]}
% \newcommand{\endoss}{\ensuremath{\mathrm{END}_E}}
\newcommand{\hl}[1]{\textbf{\textit{#1}}}
\newcommand{\polys}{\F[X]}
\newcommand{\acc}{{\mathbf{acc}}}
\newcommand{\ideal}{\mathbf{I}}
\newcommand{\gen}{\alpha}
\newcommand{\spac}{\\ \vspace{0.2in} \noindent}
\newcommand{\polylog}{\ensuremath{\mathsf{polylog}}\xspace}
% \renewcommand{\bf}{\begin{frame}}
% \newcommand{\ef}{\end{frame}}
%\setbeamersize{text margin left=3mm,text margin right=3mm}
\newcommand{\nl}{\\ \pause \vspace{0.2in}}
\newcommand{\nlnp}{\\ \vspace{0.2in}}
\newcommand{\stitle}[1]{{\large{\textcolor{purple}{\emph{#1}}}}}
\DeclareMathAlphabet{\mathpgoth}{OT1}{pgoth}{m}{n}
\newcommand{\cq}{\mathpgoth{cq} }
\newcommand{\cqstar}{\ensuremath{\mathpgoth{cq^{\mathbf{*}} }}}
\newcommand{\flookup}{{\mathsf{\mathpgoth{Flookup}}}}
\newcommand{\baloo}{{\mathrm{ba}\mathit{loo}}}
\newcommand{\caulkp}{{\mathsf{\mathrel{Caulk}\mathrel{\scriptstyle{+}}}}}
\newcommand{\caulk}{{\mathsf{Caulk}}}
\newcommand{\plookup}{\ensuremath{\mathpgoth{plookup}}\xspace}
\newcommand{\srs}{\ensuremath{\mathsf{srs}}}
\newcommand{\tablegroup}{\ensuremath{\mathbb{H}}\xspace}
\newcommand{\V}{\ensuremath{\mathbf{V} }\xspace}
\newcommand{\bigspace}{\ensuremath{\mathbb{V}}}
\newcommand{\papertitle}{Cached quotients and lookups}
%\newcommand{\authorname}}
\newcommand{\company}{}
\newcommand{\witsize}{{n}}
\newcommand{\witruntime}{\ensuremath{\witsize\log\witsize}\xspace}
\newcommand{\tabsize}{{N}}
\newcommand{\tabruntime}{\ensuremath{\tabsize\log\tabsize}\xspace}
\newcommand{\Gone}{{\mathbb G}_1}
\newcommand{\Gi}{\ensuremath{{\mathbb G}_i}\xspace}
\title{ \bf \papertitle \\[0.72cm]}
\author{Ariel Gabizon}
%\usefonttheme{professionalfonts}
%\usefonttheme[onlymath]{serif}
\begin{document}
\boldmath
% Creates title page of slide show using above information
\begin{frame}
\titlepage
\end{frame}
% typeset with the notes or notesonly class options
\begin{frame}
\frametitle{Constraints vs Lookups}
\textbf{Example:} Check $0\leq x \leq 2^n-1$\nl
\textbf{Constraint approach:}\\
Prover sends $b_0,\ldots,b_{n-1}$. Shows:
\begin{itemize}
\item
$\forall i, b_i\in \set{0,1}$
\item
$\sum_{i} b_i2^i =x$.\nl
\end{itemize}
Requires $n+1$ constraints.
\end{frame}
\begin{frame}
\frametitle{Lookup approach}
Preprocess table $T=\set{0,\ldots,2^n-1}$.Let $N:=|T|$. \\ \noindent
Devise protocol to check $x\in T$.\nl
\textit{\color{blue}{Old results - good when amortized:}}\\ \noindent
\noindent
\textbf{Thm[plookup]:} Can check $m$ different $x$'s are in $T$ in $O(m+ N)$
constraints.\nl
\textit{\color{blue}{New results - prover doesn't pay for table size!!\\}}
\textbf{Thm [Caulk...$\cq$]:} After $O(N\log N)$ preprocessing, can check $x\in T$, in $O(1)$ constraints.
\end{frame}
%\section[Outline]{}
% Creates table of contents slide incorporating
% all \section and \subsection commands
% \begin{frame}
% \tableofcontents
% \end{frame}
% \begin{frame}
% \frametitle{Outline}
%
% \begin{itemize}
% \item
% PCS/KZG review\pause
% \item
% KZG shenanigans
% \begin{enumerate}
% \item Committing to sparse polys.
% \item ``cached quotients''\pause
%
% \end{enumerate}
% \item Lookups
% \begin{enumerate}
% \item Motivation
% \item New results:$\cq$
% \end{enumerate}
% \end{itemize}
% \end{frame}
%
\begin{frame}
{\large{\textbf{Rest of talk:} explain main technical component of new works - \emph{cached quotients}}}\pause
\emph{First - a brief recap of polynomial commitment schemes..}
\end{frame}
\begin{frame}
\frametitle{The KZG Polynomial commitment scheme} % Insert frame title between curly braces
$G$ - generator of pairing friendly elliptic curve group.\\
\vspace{0.2in}
$\srs \defeq \enc{1},\enc{x},\ldots,\enc{x^d}$, for random $x\in \F$.\nl
For $f\in \F[X]$ of degree $d$:
$$\color{purple} \cm(f)\defeq \enc{f(x)}$$\nl
\textbf{Central Feature:}
Given $\cm(f)$ and any $a\in \F$; there is short proof for correctness of $z=f(a)$.
\end{frame}
\begin{frame}
\frametitle{The KZG Polynomial commitment scheme} % Insert frame title between curly braces
$\srs \defeq \enc{1},\enc{x},\ldots,\enc{x^d}$, for random $x\in \F$.\\
$\cm(f)\defeq \enc{f(x)}$\\
\vspace{0.2in}
Nice features:\pause
\begin{itemize}
\item \textbf{Linearity:} $\cm(f+g) = \cm(f)+\cm(g)$\pause
\item \textbf{Product checks:} Given $\cm(f_1),\cm(f_2),\cm(g_1),\cm(g_2)$ can check $f_1(X)f_2(X)\stackrel{?}{\equiv} g_1(X)g_2(X)$ via pairings.\\
(Secure in the Algebraic Group Model)
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Cached Quotients - a motivating example from $\caulk$[ZBKMN]}\pause
$Z_T(X)=\prod_{a\in T} (X-a)$
a vanishing polynomial of a subset $T\subset \F$ .\nl
$\cm(Z_T),\cm(f)$ given to verifier.\pause \\
Prover wants to show $f=Z_S$ for some $S\subset T$.\nl
Can we do this in $O(|S|)$ prover operations?(think $|S|<<|T|$)
\end{frame}
\begin{frame}
\frametitle{Cached quotients idea:}
The quotient $Z_{T\setminus S}(X) =\frac{Z_T(X)}{Z_S(X)}$ is a ``witness'' to $S\subset T$. \nl
\begin{itemize}
\item Enough to compute \textbf{commitment} to $Z_{T\setminus S}$. \pause
\item This commitment is a \textbf{sparse combination} of commitments we can \textbf{precompute}.
\end{itemize}
\emph{details in next slide..}
\end{frame}
\begin{frame}
% \frametitle{Fractional decomposition:}
For each $i\in T$, let $g_i(X)\defeq Z_{T\setminus\set{i}}(X)$.\nl
We have {\small[Tomescu et. al]}
\[Z_{T\setminus S} (X) = \sum_{i\in S} c_i\cdot g_i(X)\]
for some $c_i\in \F$.\nl
We precompute $\cm(Z_T),\sett{\cm(g_i)}{i\in T}$.\nlnp
\end{frame}
\begin{frame}
Prover then computes in $|S|$ operations:
\[\color{purple}\pi:=\cm(Z_{T\setminus S}) = \sum_{i\in S} c_i\cdot \cm(g_i)\]\nl
Verifier checks with pairing that:
\[\color{purple}e(\cm(f),\pi) =e(\cm(Z_T),\enc{1})\]
\end{frame}
\end{document}