diff --git a/docs/README.rst copy b/docs/README.rst copy
deleted file mode 100644
index 571682b..0000000
--- a/docs/README.rst copy
+++ /dev/null
@@ -1,540 +0,0 @@
-|build-status| |docs|
-
-.. |build-status| image:: https://travis-ci.org/arpcard/rgi.svg?branch=master
- :alt: build status
- :scale: 100%
- :target: https://travis-ci.org/arpcard/rgi
-
-.. |build-status| image:: https://github.com/arpcard/rgi/actions/workflows/build.yml/badge.svg?branch=master
- :alt: Workflow status badge
- :scale: 100%
- :target: https://github.com/arpcard/rgi/actions/workflows/build.yml
-
-.. |docs| image:: https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?style=flat
- :alt: Documentation
- :scale: 100%
- :target: http://bioconda.github.io/recipes/rgi/README.html
-
-====================================
-The Resistance Gene Identifier (RGI)
-====================================
-
-This application is used to predict antibiotic resistome(s) from protein or nucleotide data based on homology and SNP models. The application uses reference data from the `Comprehensive Antibiotic Resistance Database (CARD) `_.
-
-RGI analyses can be performed via the CARD website `RGI portal `_, via use of a `Galaxy wrapper `_ for the `Galaxy `_ platform, or alternatively you can install RGI from Conda or run RGI from Docker (see below). The instructions below discuss use of RGI at the command line, following a general overview of how RGI works for genomes, genome assemblies, proteomes, and metagenomic sequencing.
-
-May 2023: Chan Zuckerberg ID (CZ ID) has implemented a web-based platform for RGI analysis of assembled contigs (FASTA) or metagenomic sequencing reads (FASTQ): `CZ ID AMR Pipeline Workflow `_.
-
-**CARD reference sequences and significance cut-offs are under constant curation - as CARD curation evolves, the results of RGI evolve.**
-
-* `CARD Frequency Asked Questions `_
-* YouTube Video Lecture - Canadian Bioinformatics Workshops 2023: `Infectious Disease Genomic Epidemiology - Antimicrobial Resistant Gene (AMR) Analysis using CARD & RGI `_
-
-.. contents::
-
-Overview and Use of RGI
-=======================
-
-* `Analyzing Genomes, Genome Assemblies, Metagenomic Contigs, or Proteomes `_ (a.k.a. RGI main)
-* `Analyzing Metagenomic Reads `_ (a.k.a. RGI bwt)
-* `K-mer Prediction of Pathogen-of-Origin for AMR Genes `_ (beta-testing)
-
-License
---------
-
-Use or reproduction of these materials, in whole or in part, by any commercial organization whether or not for non-commercial (including research) or commercial purposes is prohibited, except with written permission of McMaster University. Commercial uses are offered only pursuant to a written license and user fee. To obtain permission and begin the licensing process, see the `CARD website `_.
-
-Citation
---------
-
-Alcock et al. 2023. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research, 51, D690-D699 [`PMID 36263822 `_]
-
-Support & Bug Reports
-----------------------
-
-Please log an issue on `github issue `_.
-
-You can email the CARD curators or developers directly at `card@mcmaster.ca `_.
-
----------------------
-
-
-Installation
-============
-
-Recommended installation method for most users is via Conda or Docker.
-This will handle dependency management and ensure installation of the
-correct version of RGI's external dependencies e.g., BLAST, DIAMOND.
-
-Install RGI from Conda
-----------------------
-
-Install `conda `_ on your system if not already available.
-
-Install `mamba` from `mamba `_ on your system if not already available.
-
-Search for RGI package and show available versions:
-
- .. code-block:: sh
-
- $ mamba search --channel conda-forge --channel bioconda --channel defaults rgi
-
-Create a new Conda environment
-
- .. code-block:: sh
-
- $ mamba create --name rgi --channel conda-forge --channel bioconda --channel defaults rgi
-
-Install RGI package:
-
- .. code-block:: sh
-
- $ mamba install --channel conda-forge --channel bioconda --channel defaults rgi
-
-Install RGI specific version:
-
- .. code-block:: sh
-
- $ mamba install --channel conda-forge --channel bioconda --channel defaults rgi=5.1.1
-
-Remove RGI package:
-
- .. code-block:: sh
-
- $ mamba remove rgi
-
-
-Install RGI using Docker/Singularity
-------------------------------------
-
-RGI is available via biocontainers full installed with all
-databases appropriately loaded.
-
-Install `docker `_ on your system if not already available
-
-- Pull the Docker container from biocontainers (built from Conda package at https://quay.io/repository/biocontainers/rgi?tab=tags&tag=latest).
-
- .. code-block:: sh
-
- docker pull quay.io/biocontainers/rgi:6.0.3--pyha8f3691_0
-
-- RGI can be executed from the container as follows:
-
- .. code-block:: sh
-
- docker run -v $PWD:/data quay.io/biocontainers/rgi:6.0.3--pyha8f3691_0 rgi -h
-
-
-Install Development Version
----------------------------
-
-Install Dependencies
-````````````
-The following conda command will install all RGI dependencies (listed below):
-
-.. code-block:: sh
-
- git clone https://github.com/arpcard/rgi
- conda env create -f conda_env.yml
- conda activate rgi
-
-
-- `Python 3.6 `_
-- `NCBI BLAST 2.14.0 `_
-- `zlib `_
-- `Prodigal 2.6.3 `_
-- `DIAMOND 0.8.36 `_
-- `Biopython 1.78 `_
-- `filetype 1.0.0+ `_
-- `pytest 3.0.0+ `_
-- `pandas 0.15.0+ `_
-- `Matplotlib 2.1.2+ `_
-- `seaborn 0.8.1+ `_
-- `pyfaidx 0.5.4.1+ `_
-- `pyahocorasick 1.1.7+ `_
-- `OligoArrayAux 3.8 `_
-- `samtools 1.9 `_
-- `bamtools 2.5.1 `_
-- `bedtools 2.27.1 `_
-- `Jellyfish 2.2.10 `_
-- `Bowtie2 2.3.4.3 `_
-- `BWA 0.7.17 (r1188) `_
-- `KMA 1.3.4 `_
-
-
-Install RGI
-```````````
-
-.. code-block:: sh
-
- pip install git+https://github.com/arpcard/rgi.git
-
-or
-
-.. code-block:: sh
-
- python setup.py build
- python setup.py test
- python setup.py install
-
-Running RGI Tests
-`````````````````
-.. code-block:: sh
-
- cd tests
- pytest -v -rxs
-
--------------------
-
-RGI Usage Documentation
-=======================
-
-Help Menu and Usage
-----------------------
-
-The following command will bring up RGI's main help menu:
-
-.. code-block:: sh
-
- rgi --help
-
-.. code-block:: sh
-
- usage: rgi []
- commands are:
- ---------------------------------------------------------------------------------------
- Database
- ---------------------------------------------------------------------------------------
- auto_load Automatically loads CARD database, annotations and k-mer database
- load Loads CARD database, annotations and k-mer database
- clean Removes BLAST databases and temporary files
- database Information on installed card database
- galaxy Galaxy project wrapper
-
- ---------------------------------------------------------------------------------------
- Genomic
- ---------------------------------------------------------------------------------------
-
- main Runs rgi application
- tab Creates a Tab-delimited from rgi results
- parser Creates categorical JSON files RGI wheel visualization
- heatmap Heatmap for multiple analysis
-
- ---------------------------------------------------------------------------------------
- Metagenomic
- ---------------------------------------------------------------------------------------
- bwt Align reads to CARD and in silico predicted allelic variants (beta)
-
- ---------------------------------------------------------------------------------------
- Baits validation
- ---------------------------------------------------------------------------------------
- tm Baits Melting Temperature
-
- ---------------------------------------------------------------------------------------
- Annotations
- ---------------------------------------------------------------------------------------
- card_annotation Create fasta files with annotations from card.json
- wildcard_annotation Create fasta files with annotations from variants
- baits_annotation Create fasta files with annotations from baits (experimental)
- remove_duplicates Removes duplicate sequences (experimental)
-
- ---------------------------------------------------------------------------------------
- Pathogen of origin
- ---------------------------------------------------------------------------------------
-
- kmer_build Build AMR specific k-mers database used for pathogen of origin (beta)
- kmer_query Query sequences against AMR k-mers database to predict pathogen of origin (beta)
-
- Resistance Gene Identifier -
-
- positional arguments:
- command Subcommand to run
-
- optional arguments:
- -h, --help show this help message and exit
-
- Use the Resistance Gene Identifier to predict resistome(s) from protein or
- nucleotide data based on homology and SNP models. Check
- https://card.mcmaster.ca/download for software and data updates. Receive email
- notification of monthly CARD updates via the CARD Mailing List
- (https://mailman.mcmaster.ca/mailman/listinfo/card-l)
-
-Help Menus for Subcommands
-----------------------------
-
-Help screens for subcommands can be accessed using the -h argument, e.g.
-
-.. code-block:: sh
-
- rgi load -h
-
-
-RGI Databases
---------------
-
-Loading CARD Reference Data
-````````````````````````````
-
-.. code-block:: sh
-
- usage: rgi load [-h] -i CARD_JSON [--card_annotation CARD_ANNOTATION]
- [--card_annotation_all_models CARD_ANNOTATION_ALL_MODELS]
- [--wildcard_annotation WILDCARD_ANNOTATION]
- [--wildcard_annotation_all_models WILDCARD_ANNOTATION_ALL_MODELS]
- [--wildcard_index WILDCARD_INDEX]
- [--wildcard_version WILDCARD_VERSION]
- [--baits_annotation BAITS_ANNOTATION]
- [--baits_index BAITS_INDEX] [--kmer_database KMER_DATABASE]
- [--amr_kmers AMR_KMERS] [--kmer_size KMER_SIZE] [--local]
- [--debug] [--include_other_models]
-
- Resistance Gene Identifier - 6.0.2 - Load
-
- optional arguments:
- -h, --help show this help message and exit
- -i CARD_JSON, --card_json CARD_JSON
- must be a card database json file
- --card_annotation CARD_ANNOTATION
- annotated reference FASTA for protein homolog models
- only, created using rgi card_annotation
- --card_annotation_all_models CARD_ANNOTATION_ALL_MODELS
- annotated reference FASTA which includes all models
- created using rgi card_annotation
- --wildcard_annotation WILDCARD_ANNOTATION
- annotated reference FASTA for protein homolog models
- only, created using rgi wildcard_annotation
- --wildcard_annotation_all_models WILDCARD_ANNOTATION_ALL_MODELS
- annotated reference FASTA which includes all models
- created using rgi wildcard_annotation
- --wildcard_index WILDCARD_INDEX
- wildcard index file (index-for-model-sequences.txt)
- --wildcard_version WILDCARD_VERSION
- specify variants version used
- --baits_annotation BAITS_ANNOTATION
- annotated reference FASTA
- --baits_index BAITS_INDEX
- baits index file (baits-probes-with-sequence-info.txt)
- --kmer_database KMER_DATABASE
- json of kmer database
- --amr_kmers AMR_KMERS
- txt file of all amr kmers
- --kmer_size KMER_SIZE
- kmer size if loading kmer files
- --local use local database (default: uses database in
- executable directory)
- --debug debug mode
-
-Depending upon the type of analysis you wish to perform, different sets of CARD reference data first need to be loaded into RGI. By default, these data will be loaded at the system-wide level, i.e. available to all users alongside a system-wide RGI installation, but they can alternatively be loaded for the local user directory using the --local flag. Steps for loading required data are outlined below in sections describing different types of analysis (all using --local in their examples), but below are examples of loading the canonical CARD reference data either system-wide or locally.
-
-First download the latest AMR reference data from CARD:
-
- .. code-block:: sh
-
- wget https://card.mcmaster.ca/latest/data
- tar -xvf data ./card.json
-
-Load in Local or working directory:
-
- .. code-block:: sh
-
- rgi load --card_json /path/to/card.json --local
-
-Load System wide:
-
- .. code-block:: sh
-
- rgi load --card_json /path/to/card.json
-
-Check Database Version
-``````````````````````
-
-Local or working directory:
-
- .. code-block:: sh
-
- rgi database --version --local
-
-System wide :
-
- .. code-block:: sh
-
- rgi database --version
-
-Clean Previous or Old Databases
-````````````````````````````````
-
-Local or working directory:
-
- .. code-block:: sh
-
- rgi clean --local
-
-System wide:
-
- .. code-block:: sh
-
- rgi clean
-
-Bulk Load All Reference Data
-`````````````````````````````
-
-The examples in this documentation outline best practices for loading of CARD reference data for each possible type of analysis. If you wish to bulk load all possible CARD reference data to allow on-the-fly switching between different types of analysis, here are all of the steps combined:
-
-Remove any previous loads:
-
- .. code-block:: sh
-
- rgi clean --local
-
-Download CARD and WildCARD data:
-
- .. code-block:: sh
-
- wget https://card.mcmaster.ca/latest/data
- tar -xvf data ./card.json
- wget -O wildcard_data.tar.bz2 https://card.mcmaster.ca/latest/variants
- mkdir -p wildcard
- tar -xjf wildcard_data.tar.bz2 -C wildcard
- gunzip wildcard/*.gz
-
-Create annotation files (note that the parameter *version_number* depends upon the versions of WildCARD data downloaded, please adjust accordingly):
-
- .. code-block:: sh
-
- rgi card_annotation -i /path/to/card.json > card_annotation.log 2>&1
- rgi wildcard_annotation -i wildcard --card_json /path/to/card.json
- -v version_number > wildcard_annotation.log 2>&1
-
-Load all data into RGI (note that the FASTA filenames plus the parameter *version_number* depend on the versions of CARD and WildCARD data downloaded, please adjust accordingly):
-
- .. code-block:: sh
-
- rgi load \
- --card_json /path/to/card.json \
- --debug --local \
- --card_annotation card_database_v3.2.4.fasta \
- --card_annotation_all_models card_database_v3.2.4_all.fasta \
- --wildcard_annotation wildcard_database_v4.0.0.fasta \
- --wildcard_annotation_all_models wildcard_database_v4.0.0_all.fasta \
- --wildcard_index /path/to/wildcard/index-for-model-sequences.txt \
- --wildcard_version 4.0.0 \
- --amr_kmers /path/to/wildcard/all_amr_61mers.txt \
- --kmer_database /path/to/wildcard/61_kmer_db.json \
- --kmer_size 61
-
-Running RGI on Compute Canada Serial Farm
-`````````````````````````````````````````
-
-**Order of operations**
-
-.. code-block:: sh
-
- ## Running jobs on computecanada using serial farm method
-
- - `rgi bwt` was used as example.
-
- ### step 1:
-
- - update make_table_dat.sh to construct arguments for commands
-
- ### step 2:
-
- - update eval command in job_script.sh to match your tool and also load appropriate modules
-
- ### step 3:
-
- - create table.dat using script make_table_dat.sh with inputs files in all_samples directory
- ./make_table_dat.sh ./all_samples/ > table.dat
-
- ### step 4:
-
- - submit multiple jobs using for_loop.sh
-
- ### Resource:
-
- - https://docs.computecanada.ca/wiki/Running_jobs#Serial_job
-
-
-**Update the make_table_dat.sh**
-
-.. code-block:: sh
-
- DIR=`find . -mindepth 1 -type d`
- for D in $DIR; do
- directory=$(basename $D);
- for file in $directory/*; do
- filename=$(basename $file);
- if [[ $filename = *"_pass_1.fastq.gz"* ]]; then
- read1=$(basename $filename);
- base=(${read1//_pass_1.fastq.gz/ });
- #echo "--read_one $(pwd)/$directory/${base}_pass_1.fastq.gz --read_two $(pwd)/$directory/${base}_pass_2.fastq.gz -o $(pwd)/$directory/${base} -n 16 --aligner bowtie2 --debug"
- echo "--read_one $(pwd)/$directory/${base}_pass_1.fastq.gz --read_two $(pwd)/$directory/${base}_pass_2.fastq.gz -o $(pwd)/$directory/${base}_wild -n 8 --aligner bowtie2 --debug --include_wildcard"
- fi
- done
- done
-
-This block of code is used to generate the arguments for serial farming. In this example, rgi bwt is used, however depending on the job you are running you may update it according to your specifications.
-
-**Update the job_script.sh to match used tool**
-
-.. code-block:: sh
-
- #SBATCH --account=def-mcarthur
- #SBATCH --time=120
- #SBATCH --job-name=rgi_bwt
- #SBATCH --cpus-per-task=8
- #SBATCH --mem-per-cpu=2048M
- #SBATCH --mail-user=raphenar@mcmaster.ca
- #SBATCH --mail-type=ALL
-
- # Extracing the $I_FOR-th line from file $TABLE:
- LINE=`sed -n ${I_FOR}p "$TABLE"`
-
- # Echoing the command (optional), with the case number prepended:
- #echo "$I_FOR; $LINE"
-
- # load modules
- module load nixpkgs/16.09 python/3.6.3 gcc/5.4.0 blast+/2.6.0 prodigal diamond/0.8.36 bowtie2 samtools bamtools bedtools bwa
-
- # execute command
- #eval "$LINE"
- #echo "rgi bwt $LINE"
- eval "rgi bwt $LINE"
-
-Update this block of code according to which tool you want to use. In this example, rgi bwt is shown, however for your use-case, you may update it accordingly.
-
-**Creating the table.dat**
-
-To create the table.dat, use the script made before named make_table_dat.sh along with the path to the directory containing all your inputs as an argument. Output to table.dat.
-
-.. code-block:: sh
-
- ./make_table_dat.sh ./all_samples/ > table.dat
-
-**Submit multiple jobs using for_loop.sh**
-
-This script is used once all the previous steps are completed. This script allows you to submit multiple jobs into Compute Canada for rgi.
-
-.. code-block:: sh
-
- # Simplest case - using for loop to submit a serial farm
- # The input file table.dat contains individual cases - one case per line
- export TABLE=table.dat
-
- # Total number of cases (= number of jobs to submit):
- N_cases=$(cat "$TABLE" | wc -l)
-
- # Submitting one job per case using the for loop:
- for ((i=1; i<=$N_cases; i++))
- do
- # Using environment variable I_FOR to communicate the case number to individual jobs:
- export I_FOR=$i
- sbatch job_script.sh
- done
-
-**Resources**
-
-More information on serial farming on Compute Canada can be found here_.
-
-.. _here: https://docs.computecanada.ca/wiki/Running_jobs#Serial_job
-
diff --git a/docs/rgi_main.rst b/docs/rgi_main.rst
index dd29169..59837ac 100644
--- a/docs/rgi_main.rst
+++ b/docs/rgi_main.rst
@@ -155,8 +155,7 @@ The default settings for RGI main will include Perfect or Strict predictions via
.. code-block:: sh
- rgi main --input_sequence /path/to/nucleotide_input.fasta
- --output_file /path/to/output_file --local --clean
+ rgi main --input_sequence /path/to/nucleotide_input.fasta --output_file /path/to/output_file --local --clean
For AMR gene discovery, this can be expanded to include all Loose matches: