-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest_all.py
91 lines (83 loc) · 2.99 KB
/
test_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from data import list_datasets
from das import experiment
import argparse
from transformers import AutoTokenizer, AutoModelForCausalLM
from utils import WEIGHTS
import torch
import os
def run_command(
tokenizer: AutoTokenizer,
gpt: AutoModelForCausalLM,
model_name: str,
dataset: str,
lr: float,
only_das: bool,
hparam_non_das: bool,
das_label: str,
revision: str,
folder: str,
manipulate: str,
):
# command = f"python das.py --model EleutherAI/pythia-70m --intervention {method} --dataset {dataset} --position each --num-tokens 1 --num-dims 1 --steps {steps}"
print(dataset)
experiment(
model=model_name,
dataset=dataset,
steps=100,
eval_steps=100,
grad_steps=1,
batch_size=4,
intervention_site="block_output",
strategy="last",
lr=lr,
only_das=only_das,
hparam_non_das=hparam_non_das,
das_label=das_label,
revision=revision,
log_folder=folder,
manipulate=manipulate,
tokenizer=tokenizer,
gpt=gpt,
)
def main(
model: str, lr: float=5e-3, hparam_non_das: bool=False, only_das: bool=False,
das_label: str=None, start: int=None, end: int=None, folder: str="das", revision: str="main",
manipulate: str=False, datasets: str=None):
# load model + tokenizer
device = "cuda:0" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(model)
tokenizer.pad_token = tokenizer.eos_token
gpt = AutoModelForCausalLM.from_pretrained(
model,
revision=revision,
torch_dtype=WEIGHTS.get(model, torch.bfloat16) if device == "cuda:0" else torch.float32,
).to(device)
# run commands
if datasets is None:
datasets = [d for d in list_datasets() if d.startswith("syntaxgym/")]
print(len(datasets))
# start/end
if start is None:
start = 0
if end is None:
end = len(datasets)
# make folder
if not os.path.exists(f"logs/{folder}"):
os.makedirs(f"logs/{folder}")
for dataset in datasets[start:end]:
run_command(tokenizer, gpt, model, dataset, lr, only_das, hparam_non_das, das_label, revision, folder, manipulate)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="EleutherAI/pythia-70m")
parser.add_argument("--lr", type=float, default=5e-3)
parser.add_argument("--only-das", action="store_true")
parser.add_argument("--hparam_non_das", action="store_true")
parser.add_argument("--das-label", type=str, default=None)
parser.add_argument("--start", type=int, default=None)
parser.add_argument("--end", type=int, default=None)
parser.add_argument("--folder", type=str, default="das")
parser.add_argument("--revision", type=str, default="main")
parser.add_argument("--manipulate", type=str, default=None)
parser.add_argument("--datasets", nargs='+', default=None)
args = parser.parse_args()
main(**vars(args))