-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMRMakeSentences.py
57 lines (42 loc) · 1.58 KB
/
MRMakeSentences.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from mrjob.job import MRJob
from mrjob.step import MRStep
import sys
import csv
import spacy
import re
import numpy as np
nlp = spacy.load('en')
class MRMakeSentences(MRJob):
'''
This file filters the dataset down to comments made by active users as well as turns those comments into vectors to output into the file
we do this because running the nlp command on every pair of comments gives us a maximum recursion depth reached error locally.
this might not happen in the cloud, but since we didn't get it to wortk, this is what we had to doi.
'''
def mapper_init(self):
self.active_user_list = set()
active = open('active_pairs_final.csv')
active = active.readlines()
for ind, user in enumerate(active):
user = user.strip()
user_edit = re.findall(r'"(.*)"', user)
self.active_user_list.add(user_edit[0])
#print(len(self.active_user_list))
def mapper(self, _, line):
parsed = line.split(',')
user = re.findall(r'"(.*)',parsed[0])[0]
if user in self.active_user_list:
#print(line)
comment = re.sub("[^(\w\s)]", "", parsed[1])
comment = comment.strip()
doc = nlp(comment)
yield ((user, str(doc), str(doc.vector)), None)
def reducer(self, user, count):
yield user, None
def steps(self):
return [
MRStep(
mapper_init=self.mapper_init,
mapper=self.mapper,
reducer=self.reducer)]
if __name__ == '__main__':
MRMakeSentences.run()