forked from wcmac/sippycup
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeoquery.py
511 lines (417 loc) · 24.9 KB
/
geoquery.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
"""
TODO: comment.
Note that the semantic parsing model given here is far from optimal for the
GeoQuery domain. This is intentional. The principle goals of SippyCup are
pedagogical. The limitations of the current model represent opportunities for
learning. See the exercises in the accompanying IPython Notebook.
"""
__author__ = "Bill MacCartney"
__copyright__ = "Copyright 2015, Bill MacCartney"
__credits__ = []
__license__ = "GNU General Public License, version 2.0"
__version__ = "0.9"
__maintainer__ = "Bill MacCartney"
__email__ = "See the author's website"
import re
import sys
from collections import defaultdict
from annotator import Annotator, TokenAnnotator
from domain import Domain
from example import Example
from experiment import evaluate_for_domain, test_executor, evaluate_model, sample_wins_and_losses, interact, train_test_for_domain, learn_lexical_semantics, evaluate_dev_examples_for_domain, find_best_rules
from metrics import denotation_match_metrics, DenotationAccuracyMetric, DenotationOracleAccuracyMetric
from geo880 import geo880_train_examples, geo880_test_examples
from geobase import GeobaseReader
from graph_kb import GraphKB, GraphKBExecutor
from parsing import Grammar, Rule
from scoring import rule_features
# semantics helper functions ===================================================
def sems_0(sems):
return sems[0]
def sems_1(sems):
return sems[1]
def reverse(relation_sem):
"""TODO"""
# relation_sem is a lambda function which takes an arg and forms a pair,
# either (rel, arg) or (arg, rel). We want to swap the order of the pair.
def apply_and_swap(arg):
pair = relation_sem(arg)
return (pair[1], pair[0])
return apply_and_swap
# GeoQueryDomain ===============================================================
class GeoQueryDomain(Domain):
def __init__(self):
self.geobase = GraphKB(GeobaseReader().tuples)
self.geobase_executor = GraphKBExecutor(self.geobase)
def train_examples(self):
return geo880_train_examples
def test_examples(self):
return geo880_test_examples
def dev_examples(self):
return [
# Entities .........................................................
Example(input='utah',
semantics='/state/utah',
denotation=('/state/utah',)),
Example(input='austin texas',
semantics=('.and', '/city/austin_tx', ('/state/texas', 'contains')),
denotation=('/city/austin_tx',)),
# Types ............................................................
Example(input='rivers',
semantics='river',
denotation=('/river/allegheny', '/river/arkansas', '/river/bighorn', '/river/canadian', '/river/chattahoochee', '/river/cheyenne', '/river/cimarron', '/river/clark_fork', '/river/colorado', '/river/columbia', '/river/connecticut', '/river/cumberland', '/river/dakota', '/river/delaware', '/river/gila', '/river/green', '/river/hudson', '/river/little_missouri', '/river/mississippi', '/river/missouri', '/river/neosho', '/river/niobrara', '/river/north_platte', '/river/ohio', '/river/ouachita', '/river/pearl', '/river/pecos', '/river/potomac', '/river/powder', '/river/red', '/river/republican', '/river/rio_grande', '/river/roanoke', '/river/rock', '/river/san_juan', '/river/smoky_hill', '/river/snake', '/river/south_platte', '/river/st._francis', '/river/tennessee', '/river/tombigbee', '/river/wabash', '/river/washita', '/river/wateree_catawba', '/river/white', '/river/yellowstone')),
# Joins ............................................................
Example(input='traverses utah',
semantics=('traverses', '/state/utah'),
denotation=('/lake/great_salt_lake', '/river/colorado', '/river/green', '/river/san_juan', '/road/15', '/road/70', '/road/80', '/road/84')),
Example(input='capital of new york',
semantics=('/state/new_york', 'capital'),
denotation=('/city/albany_ny',)),
Example(input='bordering new york',
semantics=('borders', '/state/new_york'),
denotation=('/state/connecticut', '/state/massachusetts', '/state/new_jersey', '/state/pennsylvania', '/state/vermont')),
Example(input='capitals of states',
semantics=('state', 'capital'),
denotation=('/city/albany_ny', '/city/annapolis_md', '/city/atlanta_ga', '/city/augusta_me', '/city/austin_tx', '/city/baton_rouge_la', '/city/bismarck_nd', '/city/boise_id', '/city/boston_ma', '/city/carson_city_nv', '/city/charleston_wv', '/city/cheyenne_wy', '/city/columbia_sc', '/city/columbus_oh', '/city/concord_nh', '/city/denver_co', '/city/des_moines_ia', '/city/dover_de', '/city/frankfort_ky', '/city/harrisburg_pa', '/city/hartford_ct', '/city/helena_mt', '/city/honolulu_hi', '/city/indianapolis_in', '/city/jackson_ms', '/city/jefferson_city_mo', '/city/juneau_ak', '/city/lansing_mi', '/city/lincoln_ne', '/city/little_rock_ar', '/city/madison_wi', '/city/montgomery_al', '/city/montpelier_vt', '/city/nashville_tn', '/city/oklahoma_city_ok', '/city/olympia_wa', '/city/phoenix_az', '/city/pierre_sd', '/city/providence_ri', '/city/raleigh_nc', '/city/richmond_va', '/city/sacramento_ca', '/city/salem_or', '/city/salt_lake_city_ut', '/city/santa_fe_nm', '/city/springfield_il', '/city/st._paul_mn', '/city/tallahassee_fl', '/city/topeka_ks', '/city/trenton_nj', '/city/washington_dc')),
# Intersection (conjunction) .......................................
Example(input='rivers that traverse utah',
semantics=('.and', 'river', ('traverses', '/state/utah')),
denotation=('/river/colorado', '/river/green', '/river/san_juan')),
Example(input='traversed by rivers that traverse utah',
semantics=(('.and', 'river', ('traverses', '/state/utah')), 'traverses'),
denotation=('/state/arizona', '/state/california', '/state/colorado', '/state/nevada', '/state/new_mexico', '/state/utah', '/state/wyoming')),
Example(input='states traversed by rivers that traverse utah',
semantics=('.and', 'state', (('.and', 'river', ('traverses', '/state/utah')), 'traverses')),
denotation=('/state/arizona', '/state/california', '/state/colorado', '/state/nevada', '/state/new_mexico', '/state/utah', '/state/wyoming')),
Example(input='states bordering new york',
semantics=('.and', 'state', ('borders', '/state/new_york')),
denotation=('/state/connecticut', '/state/massachusetts', '/state/new_jersey', '/state/pennsylvania', '/state/vermont')),
Example(input='capitals of states bordering new york',
semantics=(('.and', 'state', ('borders', '/state/new_york')), 'capital'),
denotation=('/city/boston_ma', '/city/harrisburg_pa', '/city/hartford_ct', '/city/montpelier_vt', '/city/trenton_nj')),
Example(input='cities named springfield',
semantics=('.and', 'city', ('name', 'springfield')),
denotation=('/city/springfield_il', '/city/springfield_ma', '/city/springfield_mo', '/city/springfield_oh')),
Example(input='states have cities named springfield',
semantics=('.and', 'state', ('contains', ('.and', 'city', ('name', 'springfield')))),
denotation=('/state/illinois', '/state/massachusetts', '/state/missouri', '/state/ohio')),
# Counting .........................................................
Example(input='how many states',
semantics=('.count', 'state'),
denotation=(51,)),
Example(input='how many states are traversed by rivers that traverse utah',
semantics=('.count', ('.and', 'state', (('.and', 'river', ('traverses', '/state/utah')), 'traverses'))),
denotation=(7,)),
Example(input='how many states border new york',
semantics=('.count', ('.and', 'state', ('borders', '/state/new_york'))),
denotation=(5,)),
Example(input='how many states have cities named springfield',
semantics=('.count', ('.and', 'state', ('contains', ('.and', 'city', ('name', 'springfield'))))),
denotation=(4,)),
# Comparisons ......................................................
Example(input='height of bona',
semantics=('/mountain/bona', 'height'),
denotation=(5044,)),
Example(input='mountains with height 5044',
semantics=('.and', 'mountain', ('height', 5044)),
denotation=('/mountain/bona',)),
Example(input='mountains with height greater than 5044',
semantics=('.and', 'mountain', ('height', ('.gt', 5044))),
denotation=('/mountain/foraker', '/mountain/mckinley', '/mountain/st._elias')),
Example(input='mountains with height greater than height of bona',
semantics=('.and', 'mountain', ('height', ('.gt', ('/mountain/bona', 'height')))),
denotation=('/mountain/foraker', '/mountain/mckinley', '/mountain/st._elias')),
# same semantics as previous, but uses ellipsis -- tough!
Example(input='mountains with height greater than bona',
semantics=('.and', 'mountain', ('height', ('.gt', ('/mountain/bona', 'height')))),
denotation=('/mountain/foraker', '/mountain/mckinley', '/mountain/st._elias')),
# Disjunctions (unions) ............................................
Example(input='texas or maine',
semantics=('.or', '/state/texas', '/state/maine'),
denotation=('/state/maine', '/state/texas')),
Example(input='cities or towns named springfield',
semantics=('.and', ('.or', 'city', 'city'), ('name', 'springfield')),
denotation=('/city/springfield_il', '/city/springfield_ma', '/city/springfield_mo', '/city/springfield_oh')),
Example(input='states bordering texas or maine',
semantics=('.and', 'state', ('borders', ('.or', '/state/texas', '/state/maine'))),
denotation=('/state/arkansas', '/state/louisiana', '/state/maine', '/state/new_mexico', '/state/oklahoma')),
]
# This list of lexical rules was generated by counting all 248 tokens
# in geo880_train_examples and then excluding those which plainly refer
# to entities, types, or relations.
optional_words = [
'the', 'what', 'is', 'in', 'of', 'how', 'many', 'are', 'which', 'that',
'with', 'has', 'major', 'does', 'have', 'where', 'me', 'there', 'give',
'name', 'all', 'a', 'by', 'you', 'to', 'tell', 'other', 'it', 'do',
'whose', 'show', 'one', 'on', 'for', 'can', 'whats', 'urban', 'them',
'list', 'exist', 'each', 'could', 'about', '.', '?'
]
rules_optionals = [
Rule('$ROOT', '?$Optionals $Query ?$Optionals', sems_1),
Rule('$Optionals', '$Optional ?$Optionals'),
] + [Rule('$Optional', word) for word in optional_words]
# # occurrences in geo880_train_examples
# Rule('$Optional', 'the'), # 618 huge gain!
# Rule('$Optional', 'what'), # 386 huge gain!
# Rule('$Optional', 'is'), # 283 huge gain!
# Rule('$Optional', 'in'), # 247 no impact
# Rule('$Optional', 'of'), # 150 no impact
# Rule('$Optional', 'how'), # 111 no impact
# Rule('$Optional', 'many'), # 90 no impact
# Rule('$Optional', 'are'), # 90 some gain
# Rule('$Optional', 'which'), # 75 small gain
# Rule('$Optional', 'that'), # 48 tiny gain
# Rule('$Optional', 'with'), # 48 no impact
# Rule('$Optional', 'has'), # 43 no impact
# Rule('$Optional', 'major'), # 42 small gain
# Rule('$Optional', 'does'), # 27 no impact
# Rule('$Optional', 'have'), # 23 no impact
# Rule('$Optional', 'where'), # 17 small gain
# Rule('$Optional', 'me'), # 13 small gain
# Rule('$Optional', 'there'), # 12 no impact
# Rule('$Optional', 'give'), # 9 small gain
# Rule('$Optional', 'name'), # 9 small gain
# Rule('$Optional', 'all'), # 8 small gain
# Rule('$Optional', 'a'), # 8 no impact
# Rule('$Optional', 'by'), # 5 no impact
# Rule('$Optional', 'you'), # 3 no impact
# Rule('$Optional', 'to'), # 3 no impact
# Rule('$Optional', 'tell'), # 3 no impact
# Rule('$Optional', 'other'), # 3 no impact
# Rule('$Optional', 'it'), # 3 no impact
# Rule('$Optional', 'do'), # 3 no impact
# Rule('$Optional', 'whose'), # 2 no impact
# Rule('$Optional', 'show'), # 2 no impact
# Rule('$Optional', 'one'), # 2 no impact
# Rule('$Optional', 'on'), # 2 no impact
# Rule('$Optional', 'for'), # 2 tiny gain
# Rule('$Optional', 'can'), # 2 tiny gain
# Rule('$Optional', 'whats'), # 1 tiny gain
# Rule('$Optional', 'urban'), # 1 no impact
# Rule('$Optional', 'them'), # 1 tiny gain
# Rule('$Optional', 'list'), # 1 tiny gain
# Rule('$Optional', 'exist'), # 1 no impact
# Rule('$Optional', 'each'), # 1 no impact
# Rule('$Optional', 'could'), # 1 tiny gain
# Rule('$Optional', 'about'), # 1 tiny gain
# Rule('$Optional', '.'),
# Rule('$Optional', '?'),
rules_collection_entity = [
Rule('$Query', '$Collection', sems_0),
Rule('$Collection', '$Entity', sems_0),
]
rules_types = [
Rule('$Collection', '$Type', sems_0),
Rule('$Type', 'state', 'state'),
Rule('$Type', 'states', 'state'),
Rule('$Type', 'city', 'city'),
Rule('$Type', 'cities', 'city'),
Rule('$Type', 'big cities', 'city'),
Rule('$Type', 'towns', 'city'),
Rule('$Type', 'river', 'river'),
Rule('$Type', 'rivers', 'river'),
Rule('$Type', 'mountain', 'mountain'),
Rule('$Type', 'mountains', 'mountain'),
Rule('$Type', 'mount', 'mountain'),
Rule('$Type', 'peak', 'mountain'),
Rule('$Type', 'road', 'road'),
Rule('$Type', 'roads', 'road'),
Rule('$Type', 'lake', 'lake'),
Rule('$Type', 'lakes', 'lake'),
Rule('$Type', 'country', 'country'),
Rule('$Type', 'countries', 'country'),
]
rules_relations = [
Rule('$Collection', '$Relation ?$Optionals $Collection',
lambda sems: sems[0](sems[2])),
Rule('$Relation', '$FwdRelation', lambda sems: (lambda arg: (sems[0], arg))),
Rule('$Relation', '$RevRelation', lambda sems: (lambda arg: (arg, sems[0]))),
Rule('$FwdRelation', '$FwdBordersRelation', 'borders'),
Rule('$FwdBordersRelation', 'border'),
Rule('$FwdBordersRelation', 'bordering'),
Rule('$FwdBordersRelation', 'borders'),
Rule('$FwdBordersRelation', 'neighbor'),
Rule('$FwdBordersRelation', 'neighboring'),
Rule('$FwdBordersRelation', 'surrounding'),
Rule('$FwdBordersRelation', 'next to'),
Rule('$FwdRelation', '$FwdTraversesRelation', 'traverses'),
Rule('$FwdTraversesRelation', 'cross ?over'),
Rule('$FwdTraversesRelation', 'flow through'),
Rule('$FwdTraversesRelation', 'flowing through'),
Rule('$FwdTraversesRelation', 'flows through'),
Rule('$FwdTraversesRelation', 'go through'),
Rule('$FwdTraversesRelation', 'goes through'),
Rule('$FwdTraversesRelation', 'in'),
Rule('$FwdTraversesRelation', 'pass through'),
Rule('$FwdTraversesRelation', 'passes through'),
Rule('$FwdTraversesRelation', 'run through'),
Rule('$FwdTraversesRelation', 'running through'),
Rule('$FwdTraversesRelation', 'runs through'),
Rule('$FwdTraversesRelation', 'traverse'),
Rule('$FwdTraversesRelation', 'traverses'),
Rule('$RevRelation', '$RevTraversesRelation', 'traverses'),
Rule('$RevTraversesRelation', 'has'),
Rule('$RevTraversesRelation', 'have'), # 'how many states have major rivers'
Rule('$RevTraversesRelation', 'lie on'),
Rule('$RevTraversesRelation', 'next to'),
Rule('$RevTraversesRelation', 'traversed by'),
Rule('$RevTraversesRelation', 'washed by'),
Rule('$FwdRelation', '$FwdContainsRelation', 'contains'),
# 'how many states have a city named springfield'
Rule('$FwdContainsRelation', 'has'),
Rule('$FwdContainsRelation', 'have'),
Rule('$RevRelation', '$RevContainsRelation', 'contains'),
Rule('$RevContainsRelation', 'contained by'),
Rule('$RevContainsRelation', 'in'),
Rule('$RevContainsRelation', 'found in'),
Rule('$RevContainsRelation', 'located in'),
Rule('$RevContainsRelation', 'of'),
Rule('$RevRelation', '$RevCapitalRelation', 'capital'),
Rule('$RevCapitalRelation', 'capital'),
Rule('$RevCapitalRelation', 'capitals'),
Rule('$RevRelation', '$RevHighestPointRelation', 'highest_point'),
Rule('$RevHighestPointRelation', 'high point'),
Rule('$RevHighestPointRelation', 'high points'),
Rule('$RevHighestPointRelation', 'highest point'),
Rule('$RevHighestPointRelation', 'highest points'),
Rule('$RevRelation', '$RevLowestPointRelation', 'lowest_point'),
Rule('$RevLowestPointRelation', 'low point'),
Rule('$RevLowestPointRelation', 'low points'),
Rule('$RevLowestPointRelation', 'lowest point'),
Rule('$RevLowestPointRelation', 'lowest points'),
Rule('$RevLowestPointRelation', 'lowest spot'),
Rule('$RevRelation', '$RevHighestElevationRelation', 'highest_elevation'),
Rule('$RevHighestElevationRelation', '?highest elevation'),
Rule('$RevRelation', '$RevHeightRelation', 'height'),
Rule('$RevHeightRelation', 'elevation'),
Rule('$RevHeightRelation', 'height'),
Rule('$RevHeightRelation', 'high'),
Rule('$RevHeightRelation', 'tall'),
Rule('$RevRelation', '$RevAreaRelation', 'area'),
Rule('$RevAreaRelation', 'area'),
Rule('$RevAreaRelation', 'big'),
Rule('$RevAreaRelation', 'large'),
Rule('$RevAreaRelation', 'size'),
Rule('$RevRelation', '$RevPopulationRelation', 'population'),
Rule('$RevPopulationRelation', 'big'),
Rule('$RevPopulationRelation', 'large'),
Rule('$RevPopulationRelation', 'populated'),
Rule('$RevPopulationRelation', 'population'),
Rule('$RevPopulationRelation', 'populations'),
Rule('$RevPopulationRelation', 'populous'),
Rule('$RevPopulationRelation', 'size'),
Rule('$RevRelation', '$RevLengthRelation', 'length'),
Rule('$RevLengthRelation', 'length'),
Rule('$RevLengthRelation', 'long'),
]
rules_intersection = [
# (+22% oracle accuracy)
Rule('$Collection', '$Collection $Collection',
lambda sems: ('.and', sems[0], sems[1])),
# (+6% oracle accuracy)
# 'how many states are traversed by ...'
Rule('$Collection', '$Collection $Optional $Collection',
lambda sems: ('.and', sems[0], sems[2])),
# (+3.7% oracle accuracy)
Rule('$Collection', '$Collection $Optional $Optional $Collection',
lambda sems: ('.and', sems[0], sems[3])),
]
rules_superlatives = [
Rule('$Collection', '$Superlative ?$Optionals $Collection', lambda sems: sems[0] + (sems[2],)),
Rule('$Collection', '$Collection ?$Optionals $Superlative', lambda sems: sems[2] + (sems[0],)),
Rule('$Superlative', 'largest', ('.argmax', 'area')),
Rule('$Superlative', 'largest', ('.argmax', 'population')),
Rule('$Superlative', 'biggest', ('.argmax', 'area')),
Rule('$Superlative', 'biggest', ('.argmax', 'population')),
Rule('$Superlative', 'smallest', ('.argmin', 'area')),
Rule('$Superlative', 'smallest', ('.argmin', 'population')),
Rule('$Superlative', 'longest', ('.argmax', 'length')),
Rule('$Superlative', 'shortest', ('.argmin', 'length')),
Rule('$Superlative', 'tallest', ('.argmax', 'height')),
Rule('$Superlative', 'highest', ('.argmax', 'height')),
Rule('$Superlative', '$MostLeast $RevRelation', lambda sems: (sems[0], sems[1])),
Rule('$MostLeast', 'most', '.argmax'),
Rule('$MostLeast', 'least', '.argmin'),
Rule('$MostLeast', 'lowest', '.argmin'),
Rule('$MostLeast', 'greatest', '.argmax'),
Rule('$MostLeast', 'highest', '.argmax'),
]
# (+4.5% oracle accuracy, +70% number of parses)
# 'which state is the city denver located in'
# 'which states does the mississippi river run through'
rules_reverse_joins = [
Rule('$Collection', '$Collection ?$Optionals $Relation',
lambda sems: reverse(sems[2])(sems[0])),
]
def rules(self):
return (
# denotation oracle accuracy
# train diff test
self.rules_optionals + # 0.000 0.000
self.rules_collection_entity + # 0.000 0.000 0.000
self.rules_types + # 0.003 0.003 0.000
self.rules_relations + # 0.125 0.122 0.139
self.rules_intersection + # 0.277 0.152 0.275
self.rules_superlatives + # 0.422 0.145 0.371
self.rules_reverse_joins + # 0.468 0.046 0.418
# self.rules_counting + # 0.510 0.042 0.461
# self.rules_how_many_people + # 0.547 0.037 0.489
# self.rules_entities + # 0.568 0.021 0.507
# self.rules_where_is + # 0.588 0.020 0.514
# self.rules_named + # 0.602 0.014 0.536
# self.rules_entity_entity + # 0.613 0.011 0.546
# self.rules_flip_relations + # 0.612 -0.005 0.561
[] # 0.613 0.546
)
def annotators(self):
return [TokenAnnotator(), GeobaseAnnotator(self.geobase)]
def empty_denotation_feature(self, parse):
features = defaultdict(float)
if parse.denotation == ():
features['empty_denotation'] += 1.0
return features
def features(self, parse):
features = defaultdict(float)
# TODO: turning off rule features seems to screw up learning
# figure out what's going on here
# maybe make an exercise of it!
# Actually it doesn't seem to mess up final result.
# But the train accuracy reported during SGD is misleading?
features.update(rule_features(parse))
features.update(self.empty_denotation_feature(parse))
# EXERCISE: Experiment with additional features.
return features
def weights(self):
weights = defaultdict(float)
weights['empty_denotation'] = -1.0
return weights
def grammar(self):
return Grammar(rules=self.rules(), annotators=self.annotators())
def execute(self, semantics):
return self.geobase_executor.execute(semantics)
def metrics(self):
return denotation_match_metrics()
def training_metric(self):
return DenotationAccuracyMetric()
# GeobaseAnnotator =============================================================
# EXERCISE: Make it more robust, using string edit distance or minhashing.
class GeobaseAnnotator(Annotator):
def __init__(self, geobase):
self.geobase = geobase
def annotate(self, tokens):
phrase = ' '.join(tokens)
places = self.geobase.binaries_rev['name'][phrase]
# places |= self.geobase.rev_index['abbreviation'][phrase]
# TODO: $Entity? $Location? something that indicates type?
return [('$Entity', place) for place in places]
# demos and experiments ========================================================
if __name__ == '__main__':
domain = GeoQueryDomain()
evaluate_for_domain(domain, print_examples=False)
# evaluate_dev_examples_for_domain(domain)
# train_test_for_domain(domain, seed=1)
# test_executor(domain)
# sample_wins_and_losses(domain, metric=DenotationOracleAccuracyMetric())
# learn_lexical_semantics(domain, seed=1)
# interact(domain, "the largest city in the largest state", T=0)
# find_best_rules(domain)