-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchlnet.py
66 lines (60 loc) · 2.86 KB
/
chlnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
class CHLNet:
def __init__(self, layer_sizes, gamma, lr):
self.layer_sizes = layer_sizes
self.gamma, self.lr = gamma, lr
self.W = [np.random.normal(0, 0.1, size=(i, o))
for i, o in zip(layer_sizes[:-1], layer_sizes[1:])]
self.b = [np.random.normal(0, 0.1, size=(1, i))
for i in layer_sizes[1:]]
self.L = len(layer_sizes)
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def free_phase(self, x0, T=50):
"""
The free phase runs for `T` iterations, each time running with
the same image(s) as input. Since there are feedback connections (i.e.
the activations in layer k at time t are both a function of the
activations in layer k-1 at time t *and* layer k+1 at time t-1), the
activations differ at every pass but converge to an equilibrium. The
default value of 50 should be enough to reach equilibrium in most cases.
Args:
x0: The input (in this case flattened MNIST images)
T: The number of iterations (default=50)
"""
x = [x0] + [np.zeros((len(x0), i)) for i in self.layer_sizes[1:]]
for _ in range(T):
for k in range(1, self.L):
d_x = x[k-1] @ self.W[k-1] + self.b[k-1]
if k < self.L - 1:
d_x += self.gamma * x[k+1] @ self.W[k].T
d_x = self.sigmoid(d_x)
x[k] += -x[k] + d_x
return x
def clamped_phase(self, x0, y, T=50):
"""
The clamped phase is similar to the free phase except the output units
are held fixed ("clamped") to their target values. The rest is the same
as in the free phase.
"""
x = [x0] + [np.zeros((len(x0), i)) for i in self.layer_sizes[1:-1]] + [y]
for _ in range(T):
for k in range(1, self.L-1):
d_x = x[k-1] @ self.W[k-1] + self.b[k-1]
d_x += self.gamma * x[k+1] @ self.W[k].T
d_x = self.sigmoid(d_x)
x[k] += -x[k] + d_x
return x
def update(self, x_free, x_clamped):
"""
To update the parameters of the network, we need the equilibrium state
(i.e. all of the final activations) from both the free phase and the
clamped phase. Note that the deltas for the weights and biases between
layer k and layer k+1 only depend on the activations in the two layers.
There is no global loss function or backpropagation.
"""
num_samples = len(x_free[0])
for k in range(self.L-1):
coeff = self.lr * self.gamma**(k-(self.L-1)) / num_samples
self.W[k] += coeff * (x_clamped[k].T @ x_clamped[k+1] - x_free[k].T @ x_free[k+1])
self.b[k] += coeff * np.mean(x_clamped[k+1] - x_free[k+1], axis=0)