-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathcustom_model.py
executable file
·191 lines (152 loc) · 6.21 KB
/
custom_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
"""
Created on Fri Oct 20 13:01:07 2017
@author: ayooshmac
"""
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
matplotlib.style.use('ggplot')
from torchnet import meter
import pickle as pkl
import torch
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
import torch.optim as optim
from torch import nn
from torchvision import transforms
class custom_model(object):
def __init__(self, model, loss_fn):
self.model = model
self.original_loss_fn = loss_fn
self.loss_fn = loss_fn
self.losses = []
self.losses_test = []
self.accus = []
self.accus_train = []
self.vals = []
def train(self, trainloader, testloader, validloader, optimizer, epochs, plot = False):
self.losses = []
self.losses_test = []
self.accus = []
self.accus_train = []
patience = 8
j = 0
prev_valid_score = 0
best_valid = 0
for epoch in range(epochs):
for i, data in enumerate(trainloader):
x, y = data
x,y = Variable(x), Variable(y)
optimizer.zero_grad()
outputs = self.model(x)
loss = self.loss_fn(outputs, y)
loss.backward()
optimizer.step()
#implementation of early stopping
#logging metrics for plotting,
self.losses.append(self.get_loss(trainloader))
self.losses_test.append(self.get_loss(testloader))
self.accus.append(self.metrics_val(testloader)[0])
self.accus_train.append(self.metrics_val(trainloader)[0])
curr_valid_score = (self.metrics_val(validloader)[0])
if curr_valid_score > best_valid:
best_valid = curr_valid_score
if curr_valid_score <= prev_valid_score:
j = j + 1
else:
j = 0
if (j == patience):
#print("Epochs trained: ", epoch)
#print(self.metrics_val(testloader)[0])
break
prev_valid_score = curr_valid_score
return curr_valid_score
def get_loss(self, dataloader):
loss = 0
for data in dataloader:
x,y = data
x,y = Variable(x), Variable(y)
outputs = self.model(x)
loss += self.loss_fn(outputs, y).data[0]
return loss/float(dataloader.dataset.shape[0])
def metrics(self, testloader, accuracy = True, auc = False, conf_matrix = False):
am = meter.AUCMeter()
cm = meter.ConfusionMeter(2)
correct = 0
total = 0
for data in testloader:
x,y = data
y_ = self.model(Variable(x))
_, predicted = torch.max(y_.data, 1)
cm.add(y_.data, y)
am.add(y_.data[:,1].clone(),y)
total += y.size(0)
correct += (predicted == y).sum()
print (correct, total)
if accuracy:
print("Accuracy for the model is", round(correct/float(total)*100, 4), correct, "/", total)
if auc:
print("Area under ROC curve for the given model is", round(am.value()[0],4))
if conf_matrix:
print ("Confusion Matrix for the given model is\n", cm.value())
def metrics_val(self, testloader):
am = meter.AUCMeter()
cm = meter.ConfusionMeter(2)
correct = 0
total = 0
for data in testloader:
x,y = data
y_ = self.model(Variable(x))
_, predicted = torch.max(y_.data, 1)
cm.add(y_.data, y)
am.add(y_.data[:,1].clone(),y)
total += y.size(0)
correct += (predicted == y).sum()
cor_tot = str(correct) + "/" + str(total)
return round(correct/float(total)*100, 4), cor_tot, round(am.value()[0],4), cm.value()
def get_logs(self):
return self.losses, \
self.losses_test, \
self.accus, \
self.accus_train
def plot(self, logs):
losses, losses_test, accus, accus_train = logs
steps = range(1, len(losses)+1)
plt.plot(steps, losses, color = 'r', label = 'Training Loss')
plt.plot(steps, losses_test, color = 'b', label = 'Test Loss')
plt.xlabel("Epochs")
plt.legend(['Training Loss', 'Test Loss'])
#
plt.figure(2)
plt.xlabel("Epochs")
plt.plot(steps, accus, color = 'b', label = 'Train Accuracy')
plt.plot(steps, accus_train, color = 'r', label = 'trTrain Accuracy')
plt.legend(['Test accuracy', 'Training Accuracy'])
def decision_boundary_2d(self, df, f1, f2, label = "class", h = 0.2, plot = True):
"""
Renders a 2-dimensional decision boundary generated by
the Neural Network for given data.
df: Dataframe containing the data with labels as well as
the class.
xx: Column name of the feature to be plotted on the x-axis
yy: Column name of the label to be plotted on the y-axis
label: name of the column containing the class
Returns: Plots the decision boundary with the points colored
with class
"""
color = {1: "red", 0: "blue"}
x = df[f1]
y = df[f2]
x_min, x_max = x.min() - 1, x.max() + 1
y_min, y_max = y.min() - 1, y.max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
grid = np.c_[xx.ravel(), yy.ravel()]
grid_tensor = Variable(torch.Tensor(grid))
results = torch.max(self.model(grid_tensor).data, 1)[1].numpy()
if plot:
plt.contourf(xx, yy, results.reshape(xx.shape), cmap=plt.cm.coolwarm, alpha=0.8)
plt.scatter(df[f1], df[f2], c=df[label].apply(lambda x: color[x]))
else:
return results