-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathdemo_pipeline.py
124 lines (103 loc) · 5.28 KB
/
demo_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# Copyright 2017, Wenjia Bai. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
This script demonstrates a pipeline for cardiac MR image analysis.
"""
import os
import urllib.request
import shutil
if __name__ == '__main__':
# The GPU device id
CUDA_VISIBLE_DEVICES = 0
# The URL for downloading demo data
URL = 'https://www.doc.ic.ac.uk/~wbai/data/ukbb_cardiac/'
# Download demo images
print('Downloading demo images ...')
for i in [1, 2]:
if not os.path.exists('demo_image/{0}'.format(i)):
os.makedirs('demo_image/{0}'.format(i))
for seq_name in ['sa', 'la_2ch', 'la_4ch', 'ao']:
f = 'demo_image/{0}/{1}.nii.gz'.format(i, seq_name)
urllib.request.urlretrieve(URL + f, f)
# Download information spreadsheet
print('Downloading information spreadsheet ...')
if not os.path.exists('demo_csv'):
os.makedirs('demo_csv')
for f in ['demo_csv/blood_pressure_info.csv']:
urllib.request.urlretrieve(URL + f, f)
# Download trained models
print('Downloading trained models ...')
if not os.path.exists('trained_model'):
os.makedirs('trained_model')
for model_name in ['FCN_sa', 'FCN_la_2ch', 'FCN_la_4ch', 'FCN_la_4ch_seg4', 'UNet-LSTM_ao']:
for f in ['trained_model/{0}.meta'.format(model_name),
'trained_model/{0}.index'.format(model_name),
'trained_model/{0}.data-00000-of-00001'.format(model_name)]:
urllib.request.urlretrieve(URL + f, f)
# Analyse show-axis images
print('******************************')
print(' Short-axis image analysis')
print('******************************')
# Deploy the segmentation network
print('Deploying the segmentation network ...')
os.system('CUDA_VISIBLE_DEVICES={0} python3 common/deploy_network.py --seq_name sa --data_dir demo_image '
'--model_path trained_model/FCN_sa'.format(CUDA_VISIBLE_DEVICES))
# Evaluate ventricular volumes
print('Evaluating ventricular volumes ...')
os.system('python3 short_axis/eval_ventricular_volume.py --data_dir demo_image '
'--output_csv demo_csv/table_ventricular_volume.csv')
# Evaluate wall thickness
print('Evaluating myocardial wall thickness ...')
os.system('python3 short_axis/eval_wall_thickness.py --data_dir demo_image '
'--output_csv demo_csv/table_wall_thickness.csv')
# Evaluate strain values
if shutil.which('mirtk'):
print('Evaluating strain from short-axis images ...')
os.system('python3 short_axis/eval_strain_sax.py --data_dir demo_image '
'--par_dir par --output_csv demo_csv/table_strain_sax.csv')
# Analyse long-axis images
print('******************************')
print(' Long-axis image analysis')
print('******************************')
# Deploy the segmentation network
print('Deploying the segmentation network ...')
os.system('CUDA_VISIBLE_DEVICES={0} python3 common/deploy_network.py --seq_name la_2ch --data_dir demo_image '
'--model_path trained_model/FCN_la_2ch'.format(CUDA_VISIBLE_DEVICES))
os.system('CUDA_VISIBLE_DEVICES={0} python3 common/deploy_network.py --seq_name la_4ch --data_dir demo_image '
'--model_path trained_model/FCN_la_4ch'.format(CUDA_VISIBLE_DEVICES))
os.system('CUDA_VISIBLE_DEVICES={0} python3 common/deploy_network.py --seq_name la_4ch --data_dir demo_image '
'--seg4 --model_path trained_model/FCN_la_4ch_seg4'.format(CUDA_VISIBLE_DEVICES))
# Evaluate atrial volumes
print('Evaluating atrial volumes ...')
os.system('python3 long_axis/eval_atrial_volume.py --data_dir demo_image '
'--output_csv demo_csv/table_atrial_volume.csv')
# Evaluate strain values
if shutil.which('mirtk'):
print('Evaluating strain from long-axis images ...')
os.system('python3 long_axis/eval_strain_lax.py --data_dir demo_image '
'--par_dir par --output_csv demo_csv/table_strain_lax.csv')
# Analyse aortic images
print('******************************')
print(' Aortic image analysis')
print('******************************')
# Deploy the segmentation network
print('Deploying the segmentation network ...')
os.system('CUDA_VISIBLE_DEVICES={0} python3 common/deploy_network_ao.py --seq_name ao --data_dir demo_image '
'--model_path trained_model/UNet-LSTM_ao'.format(CUDA_VISIBLE_DEVICES))
# Evaluate aortic areas
print('Evaluating atrial areas ...')
os.system('python3 aortic/eval_aortic_area.py --data_dir demo_image '
'--pressure_csv demo_csv/blood_pressure_info.csv --output_csv demo_csv/table_aortic_area.csv')
print('Done.')