-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathapp.py
101 lines (76 loc) · 2.85 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from potassium import Potassium, Request, Response
import torch
import boto3
import os
from transformers import AutoProcessor, WhisperForConditionalGeneration, WhisperConfig
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
import torchaudio
# create a new Potassium app
app = Potassium("my_app")
# @app.init runs at startup, and loads models into the app's context
@app.init
def init():
config = WhisperConfig.from_pretrained("openai/whisper-base")
processor = AutoProcessor.from_pretrained("openai/whisper-base")
with init_empty_weights():
model = WhisperForConditionalGeneration(config)
model.tie_weights()
model = load_checkpoint_and_dispatch(
model, "model.safetensors", device_map="auto"
)
# set up boto3 client with credentials from environment variables
s3 = boto3.client(
"s3",
aws_access_key_id=os.environ.get("AWS_ACCESS_KEY_ID"),
aws_secret_access_key=os.environ.get("AWS_SECRET_ACCESS_KEY"),
)
# get bucket from environment variable
bucket = os.environ.get("AWS_BUCKET")
context = {
"model": model,
"s3": s3,
"bucket": bucket,
"processor": processor,
}
return context
# @app.handler runs for every call
@app.handler()
def handler(context: dict, request: Request) -> Response:
device = get_device()
# get file path from request.json dict
path = request.json.get("path")
processor = context.get("processor")
# download file from bucket
context.get("s3").download_file(context.get("bucket"), path, "sample.wav")
# open the stored file and convert to tensors
input_features = processor(load_audio("sample.wav"), sampling_rate=16000, return_tensors="pt").input_features.to(device)
# run inference on the sample
model = context.get("model")
generated_ids = model.generate(inputs=input_features)
# convert the generated ids back to text
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# return output JSON to the client
return Response(
json = {"outputs": transcription},
status=200
)
# Note that since this function doesn't have a decorator, it's not a handler
def load_audio(audio_path):
"""Loads audio file into tensor and resamples to 16kHz"""
speech, sr = torchaudio.load(audio_path)
resampler = torchaudio.transforms.Resample(sr, 16000)
speech = resampler(speech)
return speech.squeeze()
def get_device():
if torch.cuda.is_available():
device = torch.device("cuda")
print("Running on CUDA")
elif torch.backends.mps.is_available():
device = torch.device("mps")
print("Running on MPS")
else:
device = torch.device("cpu")
print("Running on CPU")
return device
if __name__ == "__main__":
app.serve()