-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
71 lines (63 loc) · 2.32 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import argparse
import warnings
from importlib import import_module
import wandb
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--train_type',
default="single_opt",
help="""
인코더/디코더 optimizer 부여 방식 설정
'single_opt' - 모델 전체에 단일 optimizer를 적용하여 학습 진행
'dual_opt' - 모델의 인코더와 디코더에 optimzer를 개별 적용하여 학습 진행
'distillation' - Knowledge Distillation 학습 진행
각 optimzer의 learning rate는 모델 configuration에 따라 결정
"""
)
parser.add_argument(
'--project_name', default=None, help="Weight & Bias에 표시될 프로젝트명"
)
parser.add_argument(
"--exp_name",
default=None,
help="Weight & Bias에 표시될 실험명",
)
parser.add_argument(
"--config_file",
default=None,
type=str,
help="모델 configuration 파일 경로",
)
parser.add_argument(
"--teacher_ckpt",
default=None,
type=str,
help="'distillation' 학습 시 불러올 Teacher 모델 checkpoint 경로"
)
parser = parser.parse_args()
# Check config_file
if parser.config_file is None:
raise ValueError("You must insert 'config_file' to train model")
# Check train_type
if parser.train_type == 'distillation':
if parser.teacher_ckpt is None:
raise ValueError("You must insert 'teacher_ckpt' to load teacher model for knowledge distillation")
else:
del parser.teacher_ckpt
# Check W&B logging
if parser.project_name is not None:
if parser.exp_name is None:
raise ValueError("You must insert 'exp_name' when you want to training log at Weight & Bias")
run = wandb.init(project=parser.project_name, name=parser.exp_name) # initilaize Weight & Bias
else:
warnings.warn('Train will be start without Weight & Bias logging')
parser.exp_name = None
# start train
print('='*100)
print(parser)
print('='*100)
train_module = getattr(import_module(f"train_modules.train_{parser.train_type}"), 'main')
train_module(parser)
if parser.project_name is not None:
run.finish() # finish Weight & Bias