Skip to content

Latest commit

 

History

History
70 lines (51 loc) · 3.4 KB

README.md

File metadata and controls

70 lines (51 loc) · 3.4 KB

ALFRED

For basic ALFRED setup, following instructions under Quickstart in ALFRED repo's README (https://github.com/askforalfred/alfred), copied here:

ALFRED Quickstart

Clone repo:

$ git clone https://github.com/askforalfred/alfred.git alfred
$ export ALFRED_ROOT=$(pwd)/alfred

Install requirements:

$ virtualenv -p $(which python3) --system-site-packages alfred_env # or whichever package manager you prefer
$ source alfred_env/bin/activate

$ cd $ALFRED_ROOT
$ pip install --upgrade pip
$ pip install -r requirements.txt

Download Trajectory JSONs and Resnet feats (~17GB):

$ cd $ALFRED_ROOT/data
$ sh download_data.sh json_feat

Additionally, our project has a few more associated setup steps to load the MaskRCNN model finetuned on ALFRED in the MOCA paper.

pip install allennlp
pip install pytorch-lightning

mkdir -p storage/models/vision/moca_maskrcnn;
wget https://alfred-colorswap.s3.us-east-2.amazonaws.com/weight_maskrcnn.pt -O storage/models/vision/moca_maskrcnn/weight_maskrcnn.pt; 

Training the transformer

python models/train/train_transformer.py --data data/json_feat_2.1.0 --model seq2seq_im_mask --dout exp/model:{model},name:pm_and_subgoals_01 --splits data/splits/oct21.json --gpu --batch 4 --pm_aux_loss_wt 0.1 --subgoal_aux_loss_wt 0.1 --save_path temp/transformer.pth --fast_epoch --save_path models/pretrained/transformer.pth

python3 models/train/train_transformer.py --data /home/sahit/alfred-exploration/data/json_feat_2.1.0 --model seq2seq_im_mask --dout exp/model:{model},name:pm_and_subgoals_01 --splits /home/sahit/alfred-exploration/data/splits/oct21.json --gpu --batch 4 --pm_aux_loss_wt 0.1 --subgoal_aux_loss_wt 0.1 --save_path temp/transformer.pth --fast_epoch --save_path /home/sahit/alfred-exploration/models/pretrained/transformer.pth

Add --preprocess the first time you run. In subsequent runs, you can remove this flag.

Add --fast_epoch for debugging.

This will by default train on a 1000-file subset of the training data (out of 21023 files total). Can increase this number by modifying this LOC: https://github.com/belindal/alfred-exploration/blob/main/models/train/train_transformer.py#L426

The main files that I added for the Transformer training are models/train/train_transformer.py and models/model/t5.py.

Evaluating the Transformer

python3 models/eval/eval_seq2seq.py --model_path /home/sahit/alfred-exploration/models/subgoals/transformer_new_ep0_step80000.pth --eval_split valid_unseen --data /home/sahit/alfred-exploration/data/json_feat_2.1.0 --model models.model.t5 --gpu --num_threads 1 --max_steps 100
  • If you want to follow expert demonstrations until the last k subgoals, add the flag --force_last_k_subgoals with an int k
  • When this starts working for real, increase num_threads from 1 to e.g 3
  • Add flag --topk <K> to do top-K sampling with K candidiates
  • Add flag --decode_temperature <temp> to decode with temperature temp

Experiments Infrastructure

To visualize the output of the experiments run

python3 scripts/parse_results.py results.pkl results_old.pkl

The data was generated by calling run_experiments.bash (you may have to do chmod +x run_experiments.bash first). This output the results for n=50 into results.pkl, which was moved into results_old.pkl. I then tweaked the data in the split loaded in models/eval/eval.py to get the next 50 tasks and reran run_experiments.bash