This repository has been archived by the owner on Oct 16, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathn_step_a2c.py
331 lines (245 loc) · 11.4 KB
/
n_step_a2c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.nn.functional import log_softmax, softmax, mse_loss, normalize
from torch.distributions import Categorical
from torch.nn.utils import clip_grad_value_
from collections import deque
ALPHA = 0.0005 # learning rate for the actor
BETA = 0.0005 # learning rate for the critic
GAMMA = 0.99 # discount rate
HIDDEN_SIZE = 256 # number of hidden nodes we have in our approximation
PSI = 0.1 # the entropy bonus multiplier
BATCH_SIZE = 25 # number of episodes in a batch
NUM_EPOCHS = 5000
NUM_STEPS = 7 # number of steps to bootstrap after
RENDER_EVERY = 100
# Q-table is replaced by a neural network
class Actor(nn.Module):
def __init__(self, observation_space_size: int, action_space_size: int, hidden_size: int):
super(Actor, self).__init__()
self.net = nn.Sequential(
nn.Linear(in_features=observation_space_size, out_features=hidden_size, bias=True),
nn.PReLU(),
nn.Linear(in_features=hidden_size, out_features=hidden_size, bias=True),
nn.PReLU(),
nn.Linear(in_features=hidden_size, out_features=action_space_size, bias=True)
)
def forward(self, x):
x = normalize(x, dim=1)
x = self.net(x)
return x
class Critic(nn.Module):
def __init__(self, observation_space_size: int, hidden_size: int):
super(Critic, self).__init__()
self.net = nn.Sequential(
nn.Linear(in_features=observation_space_size, out_features=hidden_size, bias=True),
nn.PReLU(),
nn.Linear(in_features=hidden_size, out_features=hidden_size, bias=True),
nn.PReLU(),
nn.Linear(in_features=hidden_size, out_features=1, bias=True)
)
def forward(self, x):
x = normalize(x, dim=1)
x = self.net(x)
return x
def get_discounted_returns(rewards: torch.Tensor, gamma: float, state_values: torch.Tensor, n: int):
"""
Computes the array of discounted rewards [Gt:t+1] for the episode. See reference on p.143 S&B.
Args:
rewards: the sequence of the rewards obtained from running the episode
gamma: the discounting factor
state_values: teh values of the states calculated by the critic network
n: the horizon of the bootstrapping
Returns:
discounted_rewards: the sequence of the discounted returns from time step t
"""
discounted_rewards = torch.empty_like(rewards)
gamma_array = torch.full(size=(n+1,), fill_value=gamma) if n != 1 else None
power_gamma_array = torch.pow(gamma_array, torch.arange(n+1).float()) if n != 1 else None
# # turn the state values torch tensor into the numpy array
# state_values = state_values.numpy()
# define the end of sequence
T = rewards.shape[0]
# for every time step in the sequence
for t in range(T):
# special case of 1 step lookahead bootstrapping
if n == 1:
# check if we can discount
if t < T - 1:
Gt = rewards[t] + gamma * state_values[t+1]
else:
# the last reward
Gt = rewards[T-1]
# check if we can bootstrap
elif t + n < T:
# calculate the bootstrapped return
Gt = torch.sum(power_gamma_array[:-1] * rewards[t:(t+n)]) + power_gamma_array[-1] * state_values[t+n]
# if we can't bootstrap anymore
else:
# check if we can discount
if t < T - 1:
# compute the monte carlo return
Gt = torch.sum(power_gamma_array[:rewards[t:T].shape[0]] * rewards[t:T])
else:
# the last reward
Gt = rewards[T-1]
discounted_rewards[t] = Gt
return discounted_rewards
def get_entropy_bonus(logits: torch.Tensor) -> (torch.Tensor, torch.Tensor):
"""
Calculates the entropy bonus.
Args:
logits: the logits of the actor network
Returns:
entropy_bonus: entropy bonus
mean_entropy: the mean entropy of the episode
"""
# calculate the probabilities
p = softmax(logits, dim=1)
# calculate the log probabilities
log_p = log_softmax(logits, dim=1)
# calculate the entropy
entropy = -1 * torch.sum(p * log_p, dim=1)
# calculate the mean entropy for the episode
mean_entropy = torch.mean(entropy, dim=0)
# calculate the entropy bonus
entropy_bonus = -1 * PSI * mean_entropy
return entropy_bonus, mean_entropy
def play_episode(env: gym.Env, actor: nn.Module, critic: nn.Module, epoch: int, episode: int):
"""
Plays an episode of the environment.
Args:
env: the OpenAI environment
actor: the policy network
critic: the state value function
epoch: current epoch
episode: current episode
Returns:
state_values: the values of the states as calculated by the critic network
action_log_probs: log-probabilities of the takes actions in the trajectory
rewards: the sequence of the obtained rewards
logits: the logits of every action taken - needed to compute entropy for entropy bonus
episode_total_reward: sum of the rewards for the episode - needed for the average over 200 episode statistic
"""
# initialize the environment state
current_state = env.reset()
logits = torch.empty(size=(0, env.action_space.n), dtype=torch.float)
action_log_probs = torch.empty(size=(0,), dtype=torch.float)
state_values = torch.empty(size=(0,), dtype=torch.float)
rewards = torch.empty(size=(0,), dtype=torch.float)
# set the done flag to false
done = False
# init the total reward
episode_total_reward = 0
# accumulate data for 1 episode
while not done:
# render the episode
if epoch % RENDER_EVERY == 0 and episode == 0:
env.render()
# get the action logits from the agent - (preferences)
action_logits = actor(torch.tensor(current_state).float().unsqueeze(dim=0)).squeeze()
# append the logits
logits = torch.cat((logits, action_logits.unsqueeze(dim=0)), dim=0)
# sample an action according to the action distribution
action = Categorical(logits=action_logits).sample()
# compute the log-probabilities of the actions
log_probs = log_softmax(action_logits, dim=0)
# get the log-probability of the chosen action
action_log_probs = torch.cat((action_log_probs, log_probs[action.item()].unsqueeze(dim=0)), dim=0)
# get the current state value
current_state_value = critic(torch.tensor(current_state).float().unsqueeze(dim=0))
state_values = torch.cat((state_values, current_state_value), dim=0)
# take the action
new_state, reward, done, _ = env.step(action.item())
episode_total_reward += reward
# save the reward
rewards = torch.cat((rewards, torch.tensor(reward, dtype=torch.float).unsqueeze(dim=0)), dim=0)
# if the episode is over
if done:
break
# update the state
current_state = new_state
return state_values, action_log_probs, rewards, logits, episode_total_reward
def main():
# create the environment
env = gym.make('LunarLander-v2')
# policy network
actor = Actor(observation_space_size=env.observation_space.shape[0],
action_space_size=env.action_space.n,
hidden_size=HIDDEN_SIZE)
# state-value network
critic = Critic(observation_space_size=env.observation_space.shape[0],
hidden_size=HIDDEN_SIZE)
# define the optimizers for the policy and state-value networks
adam_actor = optim.Adam(params=actor.parameters(), lr=ALPHA)
adam_critic = optim.Adam(params=critic.parameters(), lr=BETA)
total_rewards = deque([], maxlen=100)
# run for N epochs
for epoch in range(NUM_EPOCHS):
# holder for the weighted log-probs
epoch_weighted_log_probs = torch.empty(size=(0,), dtype=torch.float)
# holder for the epoch logits
epoch_logits = torch.empty(size=(0, env.action_space.n), dtype=torch.float)
# holder for the epoch state values
epoch_state_values = torch.empty(size=(0,), dtype=torch.float)
# holder for the epoch discounted returns
epoch_discounted_returns = torch.empty(size=(0,), dtype=torch.float)
# collect the data from the episode
for episode in range(BATCH_SIZE):
# play an episode
(state_values,
action_log_probs,
rewards,
logits,
episode_total_reward) = play_episode(env=env, actor=actor, critic=critic, epoch=epoch, episode=episode)
# calculate the sequence of the discounted returns Gt
discounted_returns = get_discounted_returns(rewards=rewards,
gamma=GAMMA,
state_values=state_values.detach().squeeze(),
n=NUM_STEPS)
# calculate the advantage for time t: Q(s,a) - V(s)
advantages = discounted_returns - state_values.detach().squeeze()
# append sum of logP * A
epoch_weighted_log_probs = torch.cat((epoch_weighted_log_probs,
torch.sum(action_log_probs * advantages).unsqueeze(dim=0)), dim=0)
# append the logits for the entropy bonus
epoch_logits = torch.cat((epoch_logits, logits), dim=0)
# append the state values
epoch_state_values = torch.cat((epoch_state_values, state_values), dim=0)
# append the discounted returns
epoch_discounted_returns = torch.cat((epoch_discounted_returns, discounted_returns), dim=0)
# append the episodic total rewards
total_rewards.append(episode_total_reward)
# calculate the policy loss
policy_loss = -1 * torch.mean(epoch_weighted_log_probs)
# get the entropy bonus
entropy_bonus, mean_entropy = get_entropy_bonus(logits=epoch_logits)
# add the entropy bonus
policy_loss += (PSI * entropy_bonus)
# zero the gradient in both actor and the critic networks
actor.zero_grad()
critic.zero_grad()
# calculate the policy gradient
policy_loss.backward()
# calculate the critic loss
critic_loss = mse_loss(input=epoch_state_values.squeeze(), target=epoch_discounted_returns)
# calculate the gradient of the critic loss
critic_loss.backward()
# clip the gradients in the policy gradients and the critic loss gradients
clip_grad_value_(parameters=actor.parameters(), clip_value=0.1)
clip_grad_value_(parameters=critic.parameters(), clip_value=0.1)
# update the actor and critic parameters
adam_actor.step()
adam_critic.step()
print("\r", f"Epoch: {epoch}, Avg Return per Epoch: {np.mean(total_rewards):.3f}", end="", flush=True)
# check if solved
if np.mean(total_rewards) > 200:
print('\nSolved!')
break
# close the environment
env.close()
if __name__ == "__main__":
main()