forked from spacetelescope/ramp_simulator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathset_telescope_pointing_separated.py
executable file
·538 lines (457 loc) · 17.6 KB
/
set_telescope_pointing_separated.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
#!/usr/bin/env python
# Copyright (C) 2010-2011 Association of Universities for Research in Astronomy (AURA)
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# 3. The name of AURA and its representatives may not be used to
# endorse or promote products derived from this software without
# specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY AURA ``AS IS'' AND ANY EXPRESS OR IMPLIED
# WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL AURA BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
# TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
# USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
# DAMAGE.
#
#This local copy of set_telescope_pointing has been updated such
#that a PAV3 roll angle can be accepted as input in the find_wcs
#function. In the case where no quaternion is found, the input roll
#angle is used when calculating WCS information.
#-25 July 2017, Bryan Hilbert
'''
This script adds absolute pointing information to the FITS files provided
to it on the command line (one or more).
Currently it only uses a constant value for the engineering keywords
since the Engineering Database does not yet contain them.
It assumes the following keywords are present in the file header:
V2_REF (arcseconds)
V3_REF (arcseconds)
VPARITY (+1 or -1)
V3I_YANG (decimal degrees)
The keywords added are:
RA_V1
DEC_V1
PA_V3
CRVAL1
CRVAL2
PC1_1
PC1_2
PC2_1
PC2_2
It does not currently place the new keywords in any particular location
in the header other than what is required by the standard.
'''
from __future__ import print_function, division
from collections import namedtuple
import logging
import sys
import astropy.io.fits as fits
import numpy as np
from numpy import cos, sin
#from jwst.lib.engdb_tools import (
# ENGDB_BASE_URL,
# ENGDB_Service,
#)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
handler.setLevel(logging.DEBUG)
logger.addHandler(handler)
# Define the return from get_pointing
Pointing_Quaternions = namedtuple(
'Pointing_Quaternions',
['q', 'j2fgs_matrix', 'fsmcorr', 'obstime']
)
def add_wcs(filename,roll=0.):
'''
Given the name of a valid partially populated level 1b JWST file,
determine the simple WCS parameters from the SIAF keywords in that
file and the engineering parameters that contain information about
the telescope pointing.
It presumes all the accessed keywords are present (see first block).
'''
hdulist = fits.open(filename, 'update')
pheader = hdulist[0].header
obsstart = float(pheader['EXPSTART'])
obsend = float(pheader['EXPEND'])
v2ref = float(pheader['V2_REF'])
v3ref = float(pheader['V3_REF'])
v3idlyang = float(pheader['V3I_YANG'])
vparity = int(pheader['VPARITY'])
# ##########################################
# WARNINGWARNINGWARNINGWARNINGWARNINGWARNING
#
# Get engineering parameters about scope pointing.
# In normal operations, if the paramters cannot be found
# this should fail.
# However, for prelaunch, we'll dummy out.
#try:
# q, j2fgs_matrix, fsmcorr, obstime = get_pointing(obsstart, obsend)
#except ValueError as exception:
ra = pheader['TARG_RA']
dec = pheader['TARG_DEC']
#roll = 0
#logger.warning(
# 'Cannot retrieve telescope pointing.'
# '\n{}'
# '\nUsing TARG_RA={}, TARG_DEC={} and PA_V3={} '
# 'to set pointing.'.format(exception, ra, dec, roll)
#)
local_roll = compute_local_roll(roll, ra, dec, v2ref, v3ref)
wcsinfo = (ra, dec, local_roll)
vinfo = (ra, dec, roll)
crval1, crval2, pa_aper_deg = wcsinfo
v1_ra_deg, v1_dec_deg, v3_pa_deg = vinfo
pa_aper_deg = local_roll - vparity * v3idlyang
#else:
# # compute relevant WCS information
# logger.info('Successful read of engineering quaternions.')
# logger.debug('q={}'.format(q))
# logger.debug('j2fgs_matrix={}'.format(j2fgs_matrix))
# logger.debug('fsmcorr={}'.format(fsmcorr))
# wcsinfo, vinfo = calc_wcs(v2ref, v3ref, v3idlyang, vparity,
# q, j2fgs_matrix, fsmcorr)
# crval1, crval2, pa_aper_deg = wcsinfo
# v1_ra_deg, v1_dec_deg, v3_pa_deg = vinfo
# local_roll = compute_local_roll(v3_pa_deg, crval1, crval2, v2ref, v3ref)
#
# logger.info(
# 'Computed coordinates from quaternions:'
# '\n\tRA = {} DEC={} PA_V3={}'.format(crval1, crval2, v3_pa_deg)
# )
pheader['RA_V1'] = v1_ra_deg
pheader['DEC_V1'] = v1_dec_deg
pheader['PA_V3'] = v3_pa_deg
pheader['CRVAL1'] = crval1
pheader['CRVAL2'] = crval2
pheader['PC1_1'] = -np.cos(pa_aper_deg * D2R)
pheader['PC1_2'] = np.sin(pa_aper_deg * D2R)
pheader['PC2_1'] = np.sin(pa_aper_deg * D2R)
pheader['PC2_2'] = np.cos(pa_aper_deg * D2R)
pheader['RA_REF'] = crval1
pheader['DEC_REF'] = crval2
pheader['ROLL_REF'] = local_roll
pheader['WCSAXES'] = len(pheader['CTYPE*'])
hdulist.flush()
hdulist.close()
logger.info('WCS info for {} complete.'.format(filename))
def m_v_to_siaf(ya, v3, v2, vidlparity): # This is a 321 rotation
mat = np.array([[cos(v3)*cos(v2),
cos(v3)*sin(v2),
sin(v3)],
[-cos(ya)*sin(v2)+sin(ya)*sin(v3)*cos(v2),
cos(ya)*cos(v2)+sin(ya)*sin(v3)*sin(v2),
-sin(ya)*cos(v3)],
[-sin(ya)*sin(v2)-cos(ya)*sin(v3)*cos(v2),
sin(ya)*cos(v2)-cos(ya)*sin(v3)*sin(v2),
cos(ya)*cos(v3)]])
pmat = np.array([[0., vidlparity, 0.],
[0., 0., 1.],
[1., 0., 0.]])
return np.dot(pmat, mat)
def vector_to_ra_dec(v):
"""Returns tuple of spherical angles from unit direction Vector """
ra = np.arctan2(v[1], v[0])
dec = np.arcsin(v[2])
if ra < 0.:
ra += 2. * np.pi
return(ra, dec)
R2D = 180./np.pi
D2R = np.pi/180.
A2R = D2R/3600.
R2A = 3600.*R2D
# Define the FGS1 to SI-FOV DCM, Transpose of DCM in SE-20 section 5.8.4.2.
m1 = np.array(
[[0.9999994955442, 0.0000000000000, 0.0010044457459],
[0.0000011174826, 0.9999993811310, -0.0011125359826],
[-0.0010044451243, 0.0011125365439, 0.9999988766756]])
m2 = np.array(
[[0, 0, 1],
[1, 0, 0],
[0, 1, 0]])
m_fgs1_to_sifov = np.dot(m2, m1)
m_fgs1_to_sifovT = m_fgs1_to_sifov.transpose()
# Define the SI-FOV to V-frame DCM, From Luis' IOC
m_sifov_to_v = np.array(
[[0.99999742598, 0., 0.00226892608],
[0., 1., 0.],
[-0.00226892608, 0., 0.99999742598]])
def calc_wcs(v2ref, v3ref, v3idlyang, vidlparity,
q, j2fgs_matrix, fsmcorr):
'''
v2ref (arcsec), v3ref (arcsec), v3idlyang (deg), vidlparity (+1 or -1),
are the relevant siaf parameters. The assumed units are shown in
parentheses.
It is assumed that the siaf ref position is the corresponding WCS
reference position.
Parameter q is the SA_ZATTEST<n> engineering parameters where
n ranges from 1 to 4.
Parameter j2fgs_matrix is the transformation matrix specified by
engineering parameters SA_ZRFGS2J<n><m> where both n and m range
from 1 to 3. This is to be provided as a 1d list using this order:
11, 21, 31, 12, 22, 32, 13, 23, 33
Parameter fsmcorr are two values provided as a list consisting of:
[SA_ZADUCMDX, SA_ZADUCMDY]
This routine returns two tuples:
The first is of (CRVAL1, CRVAL2, PA_y_axis)
The second is of (V1ra, V1dec, V3pa)
All angles are in decimal degrees.
'''
q1, q2, q3, q4 = q
m_eci2j = np.array(
[[1. - 2.*q2*q2 - 2.*q3*q3,
2.*(q1*q2 + q3*q4),
2.*(q3*q1 - q2*q4)],
[2.*(q1*q2 - q3*q4),
1. - 2.*q3*q3 - 2.*q1*q1,
2.*(q2*q3 + q1*q4)],
[2.*(q3*q1 + q2*q4),
2.*(q2*q3 - q1*q4),
1. - 2.*q1*q1 - 2.*q2*q2]])
mj2fgs1 = np.array(j2fgs_matrix).reshape((3, 3)).transpose()
m_sifov_fsm_delta = np.array(
[[1., fsmcorr[0]/22.01, fsmcorr[1]/21.68],
[-fsmcorr[0]/22.01, 1., 0.],
[-fsmcorr[1]/21.68, 0., 1.]])
mpartial = np.dot(m_sifov_to_v,
np.dot(m_sifov_fsm_delta,
np.dot(m_fgs1_to_sifov, mj2fgs1)))
m_eci2v = np.dot(mpartial, m_eci2j)
v1pt = m_eci2v[0]
xeci_ra, xeci_dec = vector_to_ra_dec(v1pt)
# V1 is given by the first row.
v1_ra, v1_dec = vector_to_ra_dec(m_eci2v[0])
# V3 is given by the third row
v3_ra, v3_dec = vector_to_ra_dec(m_eci2v[2])
# The V3PA @ V1 is given by
y = cos(v3_dec) * sin(v3_ra-v1_ra)
x = sin(v3_dec) * cos(v1_dec) - \
cos(v3_dec) * sin(v1_dec) * cos((v3_ra - v1_ra))
V3PA = np.arctan2(y, x)
m_eci2siaf = np.dot(m_v_to_siaf(v3idlyang * D2R,
v3ref * A2R,
v2ref * A2R,
vidlparity), m_eci2v)
siaf_x = 0. * A2R
siaf_y = 0. * A2R
refpos = np.array(
[siaf_x,
siaf_y,
np.sqrt(1.-siaf_x * siaf_x - siaf_y * siaf_y)])
msky = np.dot(m_eci2siaf.transpose(), refpos)
vaper_ra, vaper_dec = vector_to_ra_dec(msky)
vysiaf = np.array([0., 1., 0.])
myeci = np.dot(m_eci2siaf.transpose(), vysiaf)
# The Y axis of the aperture is given by
vy_ra, vy_dec = vector_to_ra_dec(myeci)
# The VyPA @ xref,yref is given by
y = cos(vy_dec) * sin(vy_ra-vaper_ra)
x = sin(vy_dec) * cos(vaper_dec) - \
cos(vy_dec) * sin(vaper_dec) * cos((vy_ra - vaper_ra))
vypa = np.arctan2(y, x)
wcsinfo = (vaper_ra*R2D, vaper_dec*R2D, vypa*R2D)
vinfo = (v1_ra*R2D, v1_dec*R2D, V3PA*R2D)
return wcsinfo, vinfo
def get_pointing(obstart, obsend, result_type='first'):
"""
Get telescope pointing engineering data.
Parameters
----------
obstart, obsend: float
MJD observation start/end times
result_type: str
What to return. Possible options are:
`first`: Return the first non-zero matricies
`all`: Return all non-zero matricies within
the given range.
Returns
-------
q, j2fgs_matrix, fsmcorr, obstime
The engineering pointing parameters.
If the `result_type` returns multiple values, what is returned
will be a list of 4-tuples.
Raises
------
ValueError
Cannot retrieve engineering information
Notes
-----
For the moment, the first found values will be used.
This will need be re-examined when more information is
available.
"""
logger.info(
'Determining pointing between observations times (mjd):'
'\n\tobstart = {}'
'\n\tobsend = {}'.format(obstart, obsend)
)
logger.info(
'Querying engineering DB: {}'.format(ENGDB_BASE_URL)
)
try:
engdb = ENGDB_Service()
except Exception as exception:
raise ValueError(
'Cannot open engineering DB connection'
'\nException: {}'.format(
exception
)
)
params = {
'SA_ZATTEST1': None,
'SA_ZATTEST2': None,
'SA_ZATTEST3': None,
'SA_ZATTEST4': None,
'SA_ZRFGS2J11': None,
'SA_ZRFGS2J21': None,
'SA_ZRFGS2J31': None,
'SA_ZRFGS2J12': None,
'SA_ZRFGS2J22': None,
'SA_ZRFGS2J32': None,
'SA_ZRFGS2J13': None,
'SA_ZRFGS2J23': None,
'SA_ZRFGS2J33': None,
'SA_ZADUCMDX': None,
'SA_ZADUCMDY': None,
}
for param in params:
try:
params[param] = engdb.get_values(
param, obstart, obsend, time_format='mjd', include_obstime=True
)
except Exception as exception:
raise ValueError(
'Cannot retrive {} from engineering.'
'\nFailure was {}'.format(
param,
exception
)
)
# Find the first set of non-zero values
results = []
for idx in range(len(params['SA_ZATTEST1'])):
values = [
params[param][idx].value
for param in params
]
if any(values):
# The tagged obstime will come from the SA_ZATTEST1 mneunonic
obstime = params['SA_ZATTEST1'][idx].obstime
# Fill out the matricies
q = np.array([
params['SA_ZATTEST1'][idx].value,
params['SA_ZATTEST2'][idx].value,
params['SA_ZATTEST3'][idx].value,
params['SA_ZATTEST4'][idx].value,
])
j2fgs_matrix = np.array([
params['SA_ZRFGS2J11'][idx].value,
params['SA_ZRFGS2J21'][idx].value,
params['SA_ZRFGS2J31'][idx].value,
params['SA_ZRFGS2J12'][idx].value,
params['SA_ZRFGS2J22'][idx].value,
params['SA_ZRFGS2J32'][idx].value,
params['SA_ZRFGS2J13'][idx].value,
params['SA_ZRFGS2J23'][idx].value,
params['SA_ZRFGS2J33'][idx].value,
])
fsmcorr = np.array([
params['SA_ZADUCMDX'][idx].value,
params['SA_ZADUCMDY'][idx].value,
])
results.append(Pointing_Quaternions(
q=q,
j2fgs_matrix=j2fgs_matrix,
fsmcorr=fsmcorr,
obstime=obstime
))
# Short circuit if all we're looking for is the first.
if result_type == 'first':
break
if not len(results):
raise ValueError(
'No non-zero quanternion found '
'in the DB between MJD {} and {}'.format(obstart, obsend)
)
if result_type == 'first':
return results[0]
else:
return results
def get_pointing_stub(obstart, obsend):
'''
For the time being this simply returns the same damn values regardless of
the input time (awaiting the time that these parameters are actually
in the engineering database)
'''
# The following values of q correspond to the engineering keyword values:
# SA_ZATEST1, SA_ZATEST2, SA_ZATEST3, SA_ZATEST4
q = np.array([-0.36915286, 0.33763282, 0.05758533, 0.86395264])
# The following values of j2fgs_matrix correspond to the engineering
# keyword values of:
# SA_ZRFGS2K11 SA_ZRFGS2K21 SA_ZRFGS2K31
# SA_ZRFGS2K21 SA_ZRFGS2K22 SA_ZRFGS2K32
# SA_ZRFGS2K31 SA_ZRFGS2K32 SA_ZRFGS2K33
j2fgs_matrix = np.array(
[-1.00444000e-03, 3.38145836e-03, 9.99993778e-01,
9.99999496e-01, -3.90000000e-14, 1.00444575e-03,
3.39649146e-06, 9.99994283e-01, -3.38145665e-03])
# The following values of fsmcorr correspond to the engineering keywords:
# SA_ZADUCMDX, SA_ZADUCMDY
fsmcorr = np.array([0., 0.])
return q, j2fgs_matrix, fsmcorr
def compute_local_roll(pa_v3, ra_ref, dec_ref, v2_ref, v3_ref):
"""
Computes the position angle of V3 (measured N to E) at the center af an aperture.
Parameters
----------
pa_v3 : float
Position angle of V3 at (V2, V3) = (0, 0) [in deg]
v2_ref, v3_ref : float
Reference point in the V2, V3 frame [in arcsec]
ra_ref, dec_ref : float
RA and DEC corresponding to V2_REF and V3_REF, [in deg]
Returns
-------
new_roll : float
The value of ROLL_REF (in deg)
"""
v2 = np.deg2rad(v2_ref / 3600)
v3 = np.deg2rad(v3_ref / 3600)
ra_ref = np.deg2rad(ra_ref)
dec_ref = np.deg2rad(dec_ref)
pa_v3 = np.deg2rad(pa_v3)
M = np.array([[cos(ra_ref) * cos(dec_ref),
-sin(ra_ref) * cos(pa_v3) + cos(ra_ref) * sin(dec_ref) * sin(pa_v3),
-sin(ra_ref) * sin(pa_v3) - cos(ra_ref) * sin(dec_ref) * cos(pa_v3)],
[sin(ra_ref) * cos(dec_ref),
cos(ra_ref) * cos(pa_v3) + sin(ra_ref) * sin(dec_ref) * sin(pa_v3),
cos(ra_ref) * sin(pa_v3) - sin(ra_ref) * sin(dec_ref) * cos(pa_v3)],
[sin(dec_ref),
-cos(dec_ref) * sin(pa_v3),
cos(dec_ref) * cos(pa_v3)]
])
return _roll_angle_from_matrix(M, v2, v3)
def _roll_angle_from_matrix(matrix, v2, v3):
X = -(matrix[2, 0] * np.cos(v2) + matrix[2, 1] * np.sin(v2)) * np.sin(v3) + matrix[2, 2] * np.cos(v3)
Y = (matrix[0, 0] * matrix[1, 2] - matrix[1, 0] * matrix[0, 2]) * np.cos(v2) + \
(matrix[0, 1] * matrix[1, 2] - matrix[1, 1] * matrix[0, 2]) * np.sin(v2)
new_roll = np.rad2deg(np.arctan2(Y, X))
if new_roll < 0:
new_roll += 360
return new_roll
if __name__ == '__main__':
if len(sys.argv) <= 1:
raise ValueError('missing filename argument(s)')
for filename in sys.argv[1:]:
logger.info('Setting pointing for {}'.format(filename))
add_wcs(filename)